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Abstract

Forensic latent fingerprint recognition has taken a significant transition in recent

decades from a fully manual identification procedure to the incorporation of Automated Finger-

print Identification Systems (AFIS) by law enforcement agencies to identify suspects. Latent

fingerprints are those fingerprints that are revealed using chemical or optical processing and

collected from a crime scene by specialists trained in forensic sciences. These latent fingerprints

are then compared to reference fingerprints stored in the AFIS database called tenprints or ex-

emplars. However, the latent fingerprints thus obtained from crime scenes are generally of very

poor quality. They can be highly partial in nature, non-linearly deformed, smudgy, and with

overlapped fingerprints. These characteristics of latent fingerprints introduce many challenges

in employing a fully automatic latent fingerprint matching.

This PhD Thesis is focused on solving some of the major challenges in automated latent

fingerprint identification. In particular, the Thesis focuses on improving the performance accu-

racies of minutiae-based fingerprint matchers for latent fingerprints by exploring the problem of

partial fingerprint to full fingerprint matching. Further, we also develop an evidence evaluation

model for the matched fingerprints based on likelihood ratio from the similarity scores generated

by the minutiae-based matchers. More specifically, the main contributions of the Thesis can be

divided in three blocks.

First, most fingerprint matching algorithms in general assume approximately the same size

of the minutiae set, the set of key features of a fingerprint based on which comparisons can

be made, between the query and the reference minutiae for good identification accuracy. In

practice, however, it is frequent that the size of latent minutiae set is very small compared

to the size of tenprint minutiae sets, as a result of which matching performance is hampered.

To make the best use of minutiae-based matchers, it is advantageous to know the location of

partial fingerprint minutiae pattern in the full fingerprint minutiae pattern, thereby reducing

the minutiae search space to improve the matching performance. However, existing minutiae

based alignment techniques are not well adapted to use in partial fingerprint alignment. An

image-based registration is also not feasible due to the poor quality of latent fingerprints. In

the first part of this Thesis, we focus on the problem of aligning a partial fingerprint against

a full fingerprint, especially of poor quality latents. Instead of minutiae, we used orientation

fields (OF) to perform the alignment. We reduce fingerprint images to orientation images,

and we look at the alignment problem as registering the partial fingerprint orientation image

into the full fingerprint orientation image. To achieve this task, we develop a new correlation-

based hierarchical registration method for orientation images to register a partial fingerprint in

a full fingerprint. The OF representing the flow of ridges is a relatively stable global feature

of fingerprint images. We experimentally demonstrate a significant improvement in the rank

identification accuracies for minutiae-based matchers by incorporating our registration algorithm



to reduce the search space of minutiae in full fingerprints. We also demonstrate the usefulness

of our proposed method as a fully automatic tool.

Second, AFIS use only a limited subset of the types of discriminatory features which can be

automatically extracted from the fingerprint images using a feature extraction algorithm. On the

other hand, forensic examiners use a richer set of features during manual comparison as compared

to AFIS comparisons. This could be a possible reason why manual comparisons outperform

AFIS comparisons. The features not currently used by commercial AFIS are generally termed

as Extended Feature Sets (EFS). Many commercial minutiae-based matchers do not use EFS.

They mostly use only two prominent ridge characteristics namely ridge-endings and bifurcations.

To use EFS in automated systems, reliable feature extraction algorithms are mandatory. In the

second part of Dissertation, we focus on the problem of using EFS in a typical minutiae-based

matcher. A realistic database from forensic fingerprint casework consisting of rare minutiae

features was obtained from the Spanish law enforcement agency, Guardia Civil. We propose

a method to improve the identification accuracy of minutiae-based matchers for partial latent

fingerprints by incorporating reliably extracted rare minutiae features. Our proposed algorithm

modifies the similarity scores of minutiae-based matchers based on the presence of rare minutia

features like fragments, enclosures, dots, interruptions, etc. These rare features are used to

automatically estimate an affine function that transforms the latent minutiae set to the tenprint

minutiae set, generating a fitting error which is then used to adjust the baseline minutiae-

based matching score. We experimentally demonstrate significant improvement in the rank

identification accuracies of minutiae-based matchers when their similarity scores are modified in

this way.

Third, the uniqueness of a fingerprint is not an established fact but only an empirical obser-

vation. There is a widespread concern about the scientific basis underlying the individuality of

fingerprints, especially when using them in the court of law. Many individualization models for

fingerprints have been proposed in the research literature. However, there is no scientific frame-

work in use at the criminal justice system to characterize the uncertainty involved in the friction

ridge analysis methodology, as well as to express the strength of opinion of the forensic examiner

quantitatively. Such a requirement has been articulated in several influential reports like the

National Research Council 2009 report “Strengthening Forensic Science in the United States:

A Path Forward”. The new paradigm coming forward in this regard avoids hard identification

decisions by considering evidence reporting methods that incorporate uncertainty and statistics.

Among all the methods for evidence evaluation, the likelihood ratio has shown much promise and

is receiving greater attention. Using the technique we developed for improving the rank identi-

fication accuracies of minutiae-based matchers by incorporating rare minutiae features outlined

above, we build a robust likelihood ratio evidence evaluation model for individualization.

In summary, in this Disseration we address three key challenges for automated latent finger-

print matching: 1) partial fingerprint registration using Orientation Fields, 2) use of Extended

Feature Sets, and 3) development of a robust evidence evaluation tool.





Resumen

El reconocimiento forense de huellas dactilares latentes ha evolucionado considerablemente en

las últimas décadas mediante la incorporación de sistemas automáticos (Automated Fingerprint

Identification Systems, AFIS) para identificar sospechosos por parte de las fuerzas de seguridad.

Cualquier impresión producida por el contacto de dedos humanos se conoce generalmente como

huella dactilar. Las imágenes de huellas dactilares obtenidas mediante el procesado qúımico u

óptico de escenas criminales por especialistas forenses se denominan huellas dactilares latentes.

Dichas huellas dactilares recuperadas de escenas criminales tienen frecuentemente una calidad

muy baja. Pueden ser parciales, deformadas de modo no lineal, borrosas, o puede haber varias

huellas superpuestas, etc. Estas caracteŕısticas de las huellas dactilares latentes introducen nu-

merosos desaf́ıos en el uso de comparadores completamente automáticos de huellas dactilares

latentes. Las huellas dactilars latentes se comparan usando sistemas AFIS con huellas dactilares

de referencia previamente almacenadas en una base de datos.

Esta Tesis Doctoral se centra en resolver algunos de los mayores desaf́ıos en la identificación

automática de huellas dactilares latentes. En particular, la Tesis de centra en la mejora de la

precisión de la identificación de comparadores de huellas dactilares basados en minucias mediante

la exploración del problema de la comparación de huellas dactilares parciales, y desarrolla un

modelo de valoración de las evidencias basado en ratios de verosimilitud de las puntuaciones

de similitud generadas por comparadores basados en minucias. Las tres ĺıneas principales de

investigación cubiertas en esta Tesis se resumen a continuación.

En primer lugar, para obtener una identificación precisa, la mayor parte de los algoritmos

de comparación de huellas dactilares asumen que el tamaño del conjunto de minucias es aprox-

imadamente igual entre las minucias de referencia y las de entrada. Sin embargo, el tamaño de

la huella latente de entrada es frecuentemente muy pequeño en comparación con el tamaño de

la referencia. Con el objetivo de aprovechar al máximo los comparadores basados en minucias,

seŕıa ventajoso conocer la posición del patrón de minucias de la huella parcial con respecto al

patrón completo, reduciendo de este modo la búsqueda en el espacio de minucias para mejorar el

rendimiento. Las técnicas de alineado de minucias existentes no se adaptan bien al uso de huellas

dactilares parciales. Un registro basado en imagen tampoco es factible dada la baja calidad de

las huellas latentes. En la primera parte de esta Tesis, nos centramos en el problema del alin-

eamiento de huellas dactilares parciales respecto a huellas completas, especialmente en el caso

de huellas latentes de baja calidad. En lugar de minucias, usamos campos de orientación (Ori-

entation Fields, OF) para el alineamiento. Reducimos las imágenes de las huellas a imágenes de

orientación, y tratamos el problema del alineamiento como el registro de imágenes de orientación

de huellas dactilares parciales dentro de la imagen completa. El OF que representa el flujo de las

crestas es una representación relativamente estable de caracteŕısticas globales de huellas dacti-

lares. El dispositivo de captura, las variaciones de contraste y otros efectos de calidad no afectan

mucho a la representación OF de la huella dactilar comparada con la imagen de entrada o las



minucias. Se ha desarrollado un nuevo método jerárquico de registro de huellas parciales para

imágenes de orientación basado correlación, y demostramos experimentalmente la significativa

mejora en la precisión de la identificación para comparadores basados en minucias al incorpo-

rar nuestro algoritmo de registro para reducir el espacio de búsqueda de minucias en huellas

completas. También probamos la utilidad del nuestro método como herramienta completamente

automática.

En segundo lugar, los sistemas AFIS usan normalmente tipos limitados de caracteŕısticas

extráıdos de las huellas dactilares. Por otra parte, los examinadores forenses utilizan conjuntos

más ricos de caracteŕısticas durante la comparación manual, con respecto a las comparaciones

de los AFIS. Ésta podŕıa ser la razón por la que la comparación manual funciona mejor que la

realizada por los AFIS. Las caracteŕısticas que actualmente no son usadas por AFIS comerciales

se denominan generalmente Conjuntos de Caracteŕısticas Extendidas (Extended Feature Sets,

EFS). En su mayor parte, los sistemas AFIS utilizan sólo dos caracteŕısticas distintivas de las

crestas llamadas final de cresta y bifurcación. Para usar EFS en sistemas automáticos se necesitan

algoritmos de extracción de caracteŕısticas fiables. En la segunda parte de la Disertación, nos

centramos en la incorporación de EFS a comparadores t́ıpicos basados únicamente en minucias.

Se ha utilizado para ello una nueva base de datos de huellas dactilares forenses obtenida de

casos reales gracias a la Guardia Civil. Proponemos un método para mejorar la precisión de

los comparadores basados en minucias para huellas latentes parciales al incorporar minucias

at́ıpicas extráıdas de forma fiable. El algoritmo propuesto modifica las puntuaciones de similitud

de los comparadores basados en minucias teniendo en cuenta la información proporcionada por

dichas minucias at́ıpicas. Dichas minucias at́ıpicas o de baja frecuencia de aparición se usan

para estimar una función af́ın que transforma el conjunto de minucias latentes al conjunto

de minucias de la referencia, y cuyo error de ajuste se usa para adaptar la puntuación de

similitud. Demostramos con ello experimentalmente una mejora significativa en la precisión de

la identificación de comparadores basados en minucias.

En tercer lugar, la unicidad de la huella dactilar no es un hecho establecido sino solamente

una observación emṕırica. Hay una preocupación generalizada acerca de la base cient́ıfica que

soporta la individualidad de las huellas dactilares, especialmente cuando se usan en un juicio.

Se han propuesto numerosos modelos de individualización de huellas dactilares en la literatura.

No hay un marco cient́ıfico en uso en el sistema de justicia que caracterice la incertidumbre en

la metodoloǵıa de análisis y comparación de huellas dactilares, aśı como la expresión cuanti-

tativa de la certeza de la opinión del examinador forense. Dicha necesidad se ha manifestado

en diversos informes influyentes como el informe del Consejo de Investigación Nacional Ameri-

cano de 2009 “Strengthening Forensic Science in the United States: A Path Forward”. El nuevo

paradigma que está surgiendo a este respecto evita decisiones ŕıgidas al considerar métodos para

presentar evidencias que incorporan incertidumbre y estad́ısticas poblacionales. Entre todos los

métodos de evaluación de evidencias, el ratio de verosimilitud está recibiendo una gran atención.

Usando la técnica desarrollada para mejorar la precisión de la identificación de ranking de com-

paradores basados en minucias con nuestro método de modificación de puntuaciones basado en



EFS, hemos construido un modelo robusto de ratios de verosimilitud, que sirve para cuantificar

estad́ısticamente el peso de la evidencia en la comparación forense de huellas dactilares.

En resumen, en esta Tesis se abordan tres problemas fundamentales para el uso de la huel-

la dactilar como evidencia forense: 1) registro de huellas parciales basado en campos de ori-

entación (OF), 2) uso de conjuntos extendidos fiables de caracteŕısticas (EFS), y 3) desarrollo

de metodoloǵıa estad́ıstica para la valoración estad́ıstica de la evidencia.
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Chapter 1

Introduction

Forensic sciences play a critical role in the criminal justice system by providing the crime

investigators with scientifically based information through the analysis of physical evidences

obtained from the crime scenes. A crime investigation typically involves collecting forensic

evidences from the crime scenes, analyze the evidences in laboratory and then present the con-

clusions in the court. Different crime cases presents different types of challenges. Some cases

might involve collecting and analyzing large amount of evidences. Conclusions derived from

multiple evidence will then be combined to produce the objective results to the case under in-

vestigation.

In this chapter, we briefly describe various types of evidences generally involved in the forensic

sciences, an overview of latent fingerprints, types of forensic testimony standards to be followed

for general acceptance in courts, an overview of current practices in friction ridge analysis, the

challenges faced towards individualization of forensic fingerprints, and a brief overview of the use

of newer technologies to reduce human-errors in the examination process. We will discuss the

main recommendations put forward by law enforcement agencies towards improving the friction

ridge analysis, and briefly describe an overview of this Dissertation contributing in solving some

of the challenges addressed.

1.1. Types of evidences in forensic sciences

Forensic evidences constitute all the means by which any alleged matter of fact whose truth

is investigated at judicial trial is established or disproved. Admissible evidence are those which

a court admits for judges and juries to consider for the deciding of a particular case. Forensic

evidences can originate from diverse sources - from genetic material or trace chemicals to dental

history or fingerprints. Evidence can serve many roles in an investigation, such as to trace an

illicit substance, identify remains or reconstruct a crime [U.S.Department, 2013].

1



Chapter 1. Introduction

Various types of forensic evidences usually collected with regards to a crime are as fol-

lows [U.S.Department, 2013]:

1. Controlled Substances: The presence of illegal drugs such as heroin, marijuana or regulated

prescription medications are analyzed in the crime scene or related scenarios by the forensic

examiners. Those chemicals that have a legally recognized potential for abuse are termed

as controlled substances. A major step taken by law enforcement agencies to fight against

drug-related crime and violence is by detecting and identifying controlled substances.

2. Digital Evidence: Any evidences which in the form of information stored or transmitted

in binary forms which may be trusted by court are termed as digital evidence. Such

evidences may be retrieved from storage medias such as computer hard drive, memory

cards of mobile phone, a CD, floppy disc, flash cards of camera, online data storage etc.

3. Forensic Anthropology : The examination of the human skeletons or the remains in an

advanced stage of decomposition is called forensic anthropology. It involves estimating the

time of death and the means of injury, or assessing the age, gender, height and ancestry

of the victim. These sort of examinations helps the crime investigators to identify the

victims.

4. Forensic Dentistry : Forensic dentistry is the application of dental knowledge towards

assisting investigators in identifying the human remains. This involves examining the

development, anatomy and any restorative dental corrections of the teeth, such as fillings,

to make a comparative identification of a person.

5. DNA Evidence: DNA testing or DNA profiling is the technique followed by forensic exam-

iners to identify individuals by examining the characteristics of their DNA. For unrelated

individuals, the DNA profile shows small variations among their DNA. Only 0.1% of the

DNA differs from one person to another except for monozygotic twins. Scientists can

use these variable regions to generate a DNA profile of an individual, using samples from

blood, bone, hair, and other body tissues and products.

6. Forensic Pathology : It is the science by which the cause of death is determined by exam-

ining the corpse. Forensic pathologist is a medical doctor who has specialized in forensic

pathology. An autopsy is conducted by the medical examiner focusing to determine the

cause and manner of the death that is violent, unusual or untimely. Also, the medical ex-

aminer may identify a wound pattern that can be matched to a weapon, or can determine

entry and exit wounds in deaths involving firearms and other projectiles.

7. Forensic Toxicology : The chemical analysis of biological samples for the presence of poison

or drugs is termed as toxicology. When such a technique is used to determine a substance’s

contribution towards an individual’s death, illness, or physical or mental impairment is

called forensic toxicology. The toxicology report can provide key information as to the type

2
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of substances present in an individual and if the amount of those substances is consistent

with a therapeutic dosage or is above a harmful level.

8. Questioned Documents: Questioned documents are those documents which needs to verify

the authenticity that will aid an investigation or serve the purpose of evidence in court.

Through visual examination or advanced chemical analysis of inks and paper, forensic in-

vestigators can determine information relating to a questioned document’s authentication,

authorship or creation date.

9. Trace Evidence: Trace evidences are those that are transferred between people, objects

or the environment during the crime. They can be used to reconstruct crimes, and to

describe the people, places and things involved in them. Fibers, hair, soil, wood, gunshot

residue and pollen are few examples of trace evidence.

10. Impression and Pattern Evidence: Pattern and impression evidence include any markings

produced when one object comes into contact with another object, such as latent finger-

prints, shoe-prints, toolmarks, and tire treads. It also includes pattern analysis, such as is

used when evaluating handwriting, typewriting, and writing instruments.

Among these forensic evidences, latent fingerprints are often crucial piece of evidence that

can link a suspect to a crime [Holder et al., 2011].

1.2. Latent fingerprints

Any impression made by the friction ridge skin of the human finger is generally termed as

fingerprint. Those fingerprints which are revealed using chemical or optical processing and col-

lected from a crime scene by specialists trained in forensic sciences are called latent fingerprints

(Figure 1.1(a)). These are unintentionally left fingerprints found in the crime scenes. The latent

fingerprints are then photographed, marked up for discriminatory features by forensic fingerprint

examiners, and are used to search by Automated Fingerprint Identification Systems (AFIS). In

the realm of forensic analysis, the use of latent fingerprints is a routine procedure to identify

suspects.

Law enforcement agencies maintain a huge database of the fingerprints of individuals who

are arrested or imprisoned. The forensic fingerprint database are typically collected by obtaining

a rolled fingerprints from each finger. Such fingerprints in the database are called tenprints or

exemplars fingerprints (Figure 1.1(b)). When a latent fingerprint is found, the criminal investi-

gators first search for the suspect in an AFIS database to establish the identity of the individual

to link with a particular criminal record. If there is a match, then the individual is linked to the

crime under investigation.
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(a) Latent fingerprint

(b) Tenprint card

Figure 1.1: An example latent and tenprint fingerprints used in forensic analysis.
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1.3. Forensic testimony standards

Testimonies provided by forensic examiners based on the analysis of evidence is routinely

collected and presented in court. The testimonies based on fingerprints carried substantial cred-

ibility and weight compared among various sources of evidences. A reasonably high degree of

match between the latent and the exemplar fingerprint features leads the forensic examiner to

testify irrefutably with high confidence about the decision. The testimonies provided by the

latent examiners were never questioned for decades. Central to the idea of establishing such

fingerprint based identity is the assumption that each fingerprint is unique. This assumption

allows the forensic examiner to provide unquestionable conclusions even though this assumption

lacks sound theoretical and empirical foundations [Maltoni et al., 2009]. Also, such assumption

precludes opportunities to establish any scientific error rates.

Some high profile cases challenged the scientific methodology that is followed to arrive at

conclusions by forensic examiners. These led to establish a standard for forensic expert testi-

monies to be produced in courts. Frye standard and Daubert standard are two such standards

followed by courts in United States towards accepting the expert testimonies.

1.3.1. Frye standard

Frye standard is a test to determine the admissibility of scientific evidence in court. It is

also known as “Frye test” or “general acceptance test”. Frye standard states that [Frye, 1923]:

The evidence could be admitted in court only if the thing from which the deduction

is made is sufficiently established to have gained general acceptance in the particular

field in which it belongs.

When a scientific evidence is widely disputed, then the application of Frye test is by provid-

ing a number of experts to speak for the validity of the science behind the issue in question. The

court then examines the scientific papers, books and judicial precedents on the subject under

issue to make determinations as to the reliability and general acceptance of the evidence.

Frye standard originates from a 1923 case of Frye v. United States (293F. 1013, D.C. Cir

1923) discussing about the admissibility of polygraph test as evidence. The Frye standard was

eventually superseded by Daubert standard.
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1.3.2. Daubert standard

The 1993 case of Daubert v. Marrell Dow Pharmaceuticals (113 S. Ct. 2786) again made a

significant break on the scientific acceptance test followed by Frye standard. Daubert standard

states that [Maltoni et al., 2009]:

For expert forensic testimony to be accepted, the particular tool or methodology in

question should be subjected to three main criteria of scientific validation:

1. has been tested,

2. has been subjected to peer-review, and

3. possess known error rates.

In forensic fingerprint examination methodology, a systematic way to establish error rates

could be as follows:

a) Collecting population sample.

b) Analyze inherent discriminant feature variability.

c) Report probability of two different people sharing common features.

The Daubert v. Marrell Dow Pharmaceuticals was a case where the parents of Jason Daubert

and Eric Schuller sued the pharmaceutical company claiming that the drug Bendectin manufac-

tured by the company caused birth defects to their children. The complainants evidence were

based on methodology which did not gained the general acceptance of scientific community. This

led the court to establish new standards which superseded Frye standard.

Following the Daubert case, the fingerprint individualization was first challenged in the 1999

case of United States v. Byron Mitchell case [ByronCase, 1999]. The challenge was based on

the premise that the uniqueness of fingerprint has not been objectively tested and the matching

errors are unknown. A list of 22 known exposed cases of erroneous fingerprint identification

made by forensic experts are reported in [Cole, 985-1078].

1.4. Methodology of ACE-V

The most common type of forensic evidence used in criminal investigations is latent finger-

print. Despite latent fingerprints being a crucial evidence in individualization, latent fingerprint

comparison is not an easy task. This is mainly attributed to the poor quality of the latent fin-

gerprints taken from the crime scenes. In order to improve the matching efficiency, the concept
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of “Lights-Out System” was introduced for latent matching [Dvornychenko and Garrism. M,

2006]. A Lights-Out System is a fully automatic (no human intervention) identification process.

Here, the system should automatically extract the features from latent fingerprint and match

it against the exemplars stored in the AFIS database to obtain a shortlist of possible suspects

based on some ranking strategy.

In general, the latent fingerprints obtained from crime scenes are partial in nature, and are

mostly distorted, smudgy, blurred etc. These factors will lead to high number of unreliable ex-

tracted fingerprint features which degrades the AFIS performance. AFIS do not use all kind of

discriminatory features that could be derived from a fingerprint, mainly due to the limitations of

automatic and reliable extraction of all types of features. The performance of feature extraction

and matching algorithms of AFIS in forensic scenario is of great importance to avoid erroneous

individualization, as well as in saving the time. To evaluate the commercial AFIS performance

in Lights-Out mode, NIST has conducted multi-phase open project called Evaluation of Latent

Fingerprint Technologies (ELFT) [NIST-ELFT, 2013]. The best performing latent matching

system achieved Rank-1 identification of only 63.4%.

In [Indovina et al., 2011a], it is concluded that only a limited class of latent fingerprints

(possibly of good quality latents) benefits from automated procedures, but the procedures of

marking the minutiae, determining the subjective quality of latents, etc still need to be carried

out manually. Due to these limitations, “Semi Lights-Out Systems” are only feasible currently in

the forensic scenario. In Semi Lights-Out System, some human intervention is necessary during

the feature extraction from latent fingerprints. This will involve marking the region of interest,

extracting the minutiae features, aligning the latent fingerprint etc. Once the latent fingerprint

features are extracted and encoded manually, it is compared automatically against exemplars

stored in database. The AFIS provides a list of 10 or 20 candidates with the highest matching

scores. The fingerprint examiner will then analyze these high scoring exemplar fingerprints

manually following the friction ridge examination methodology known as Analysis, Comparison,

Evaluation and Verification (ACE-V).

Friction ridge examination

The methodology that a forensic examiner should follow for a particular type of forensic evi-

dence has been well documented by Scientific Working Groups (SWG) which consists of experts

developing the standard. For forensic fingerprints, until 2014, the group was known as Scientific

Working Group on Friction Ridge Analysis, Study and Technology (SWGFAST), and they pre-

pared the document titled Standards for Examining Friction Ridge Impressions and Resulting

Conclusions [SWGFAST.v01, 2011]. From 2015, SWGFAST is replaced with the Organization of

Scientific Area Committees (OSAC) Friction Ridge Subcommittee (FRS) (OSAC-FRS) [OSAC,

a] [OSAC, b].
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Figure 1.2: Level 2 details (minutiae) of the fingerprints [NIST-EWG, 2012].

The SWGFAST standard specifies the following rules to be considered during friction ridge

examination [SWGFAST.v01, 2011] [Srihari, 2013]: 1) the fundamental principles by which

examinations are conducted, 2) features to be used for friction ridge examination and 3) specific

steps for friction ridge examination.

Fundamental principles considered for friction ridge examinations by a forensic examiner

is as follows:

1. The morphology of friction ridge skin is unique.

2. The friction ridge pattern is permanent.

3. The impression of friction ridge pattern is transferred during contact with surface.

4. An impression that contains sufficient quality and quantity of friction ridge details

can be uniquely identified or excluded.

5. Sufficiency of the friction ridge details are determined by the forensic examiner.

Fingerprint features : There are three levels of details and “other” features described to

be used for friction ridge examination.

1. Level One Details of fingerprint constitutes the general overall direction of ridge

flow. They can be used for pattern interpretation and to determine the anatomical

source (i.e, finger, palm, foot, toe) and orientation. These features are not unique to

each fingerprints. So they cannot be used for individualization but can be used for

fingerprint type classification and indexing.

2. Level Two Details describes the path of specific ridge. The actual ridge path includes

the starting position of the ridge, the path the ridge takes, the length of the ridge path

and where the ridge path stops. They principally define the typical minutiae points

such as ridge ending, bifurcations and dots (Figure 1.2) of the fingerprint. Level two

features are generally believed to be discriminative, stable and robust.

3. Level Three Details are the shapes of the ridge structures. This level of detail en-

compasses the morphology (edges, textures, and relative pore positions) of the ridge.

They can also include secondary creases, ridge breaks, etc.
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Figure 1.3: Flow chart of various steps involved in Analysis, Comparison, Evaluation and Verification

(ACE-V) [NIST-EWG, 2012].
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4. Other features describe the features like creases, scars, warts, cuts, blisters and other

imperfections. They may be permanent or temporary. Additionally they may exist

as level one, two or three details.

ACE-V methodology: The steps involved in examining a latent fingerprint is described

by the ACE-V (Analysis, Comparison, Evaluation and Verification) process. A flowchart

comprising various steps in ACE-V is shown in Figure 1.3.

ACE-V comprises of the following four phases:

1. Analysis: The forensic examiner looks for sufficiency of the details present in the given

latent fingerprint. This comprises of checking for ridge clarity, quantity of Level One,

Level Two and Level Three details.

2. Comparison: Once the latent fingerprint passes the analysis phase, many useful fric-

tion ridge details are extracted manually by the forensic examiner and are compared

against one or more exemplar/reference fingerprints shortlisted by an AFIS to deter-

mine whether they are in agreement.

3. Evaluation: Based on the conclusions derived from the analysis and comparison

phases, the forensic examiner yields a decision as individualization (identification

or match), exclusion (non-match) or inconclusive for the given latent and impression

fingerprint image pair.

4. Verification: In this phase, another qualified forensic forensic examiner reexamines

the decision made by the previous examiner by following the above three phases once

again.

1.5. Challenges in individualization of forensic fingerprints

The major challenges that are encountered in the process of individualization of latent fin-

gerprints are summarized in this section.

1.5.1. Characteristics of fingerprints

The use of latent fingerprint in forensic analysis is based on two fundamental premises:

1. Persistent : the fingerprint pattern retains its ridge pattern over time.

2. Distinctiveness: the fingerprint pattern of an individual is unique.
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Of these two premises, the characteristic of fingerprints being persistent is widely accepted,

but the second premise for the fingerprint being unique is often challenged [Pankanti et al.,

2002] [Srihari and Srinivasan, 2007].

Persistence of fingerprints

The friction ridge patterns (ridge flow and minutiae) are often described to be permanent.

However, the cellular surface of the friction ridge skin is not permanent but they are persistent

over time. The surface cells are replaced on a regular basis. The regeneration of the skin

naturally makes the effort to reproduce in a manner to maintain the previous form. There will

be microscopic variations but the overall form and features will be remarkably persistent over

time so that effective comparisons can be made.

Distinctiveness of fingerprints

The distinctiveness characteristic of fingerprint is often challenged. The uniqueness of fin-

gerprint is not an established fact but is only an empirical observation. Another assumption

related to this uniqueness is the fact that pattern formations in nature are never repeated in

their morphological structures (or as the saying goes, “nature never repeats itself”). There are

also some biological explanations for the friction ridge pattern to be unique [Holder et al., 2011].

Basic fingerprint minutiae are used in traditional fingerprint individualization, statistical

modeling and in AFIS. All of these do allow some variations within a threshold to accept the

uniqueness. AFIS do not use all discriminatory features that are possible in fingerprints, but

uses only a limited types of features automatically extracted by a feature extraction algorithm.

In spite of these limitations, no model and application has provided evidence that fingerprints

are not unique. The cases of erroneous identifications has arisen due to the partial nature of the

fingerprint as well as poor quality of latent fingerprints.

1.5.2. Effect of human factors

The examination of latent fingerprint consists of a series of steps (ACE-V) involving the

comparison of latent against exemplars. During this process, the latent examiner must reach

correct conclusion. The perception and the decision making ability among forensic examiners

vary, e.g, the decision made by a novice examiner is not always consistent with the decision made

by an experienced examiner for the same casework [Vanderkolk, 2011]. It is not guaranteed that

same conclusions can be reproduced by two different examiners.

There is no scientific framework in use at the criminal justice system to characterize the

uncertainty involved in the ACE-V procedure, as well as to express the strength of opinion of

the forensic examiner quantitatively [Srihari, 2013]. Such a requirement has been articulated
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in several influential reports [Srihari, 2013] like the NRC 2009 report [NAS-NRC, 2009] and

the NIST Human Factors report [NIST-EWG, 2012]. The new paradigm coming forward in

this regard [Saks and Koehler, 2005] avoids hard identification decisions by considering evidence

reporting methods that incorporate uncertainty and statistics.

1.5.3. Partial latent fingerprints

The state of the art fingerprint matching algorithms usually assume approximately the same

size of the minutiae set between the query and the reference minutiae template for good identi-

fication accuracy [Jea and Govindaraju, 2005]. The latent fingerprints that are obtained from

crime scenes tend to be mostly partial in nature.

The performance of the existing partial fingerprint identification systems mainly depends on

the image quality, the number of minutiae available and other derived and extended features

that can be obtained from the partial fingerprint region.

Various approaches in state of the art partial fingerprint identification [Wang and Hu, 2011]

include:

the use of localized secondary features derived from relative minutia information [Jea and

Govindaraju, 2005].

using representative points along ridge lines in addition to minutiae [Fang et al., 2007].

use of Level Three features such as dots and incipients [Jain et al., 2007a].

Comparing partial fingerprint against a full fingerprint with only limited number of discrim-

inatory features is a challenging problem.

1.6. Emerging and improving technology

Latent fingerprint examiners use AFIS, online database, digital enhancement software and

other types of technologies to assist with the Analysis, Comparison, Evaluation and Verification

process [NIST-EWG, 2012]. Combining these tools with the examiner’s own experience and

expertise make investigations more reliable and easier to explain to juries. Of these emerging

technologies, AFIS has got more importance as it helps in shortlisting the candidate or possible

suspects.
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The Report of the Expert Working Group on Human Factors in Latent Print Analysis [NIST-

EWG, 2012] has made the recommendation for some of the challenges for AFIS as follows:

Recommendation 4.1: The federal government should support research programs to

improve automated fingerprint identification systems. Such programs could address

the following issues:

1. Expanding the algorithms used to match prints to account for the fact that the

diagnostic value of minutiae depends on the region in which they are located;

2. Making fingerprint and palm print databases interoperable among local, state,

and federal automated identification systems; and

3. Increasing compatibility between automated identification systems and other la-

tent print software tools, including digital enhancement programs, probability

calculation programs, and automated quality assessment programs.

1.7. Pre-registration for latent fingerprints

The alignment between the input and the reference fingerprint is a crucial step. This is

because the fingerprint images captured in different instances might have different rotation,

translation or non-linear deformation between them. The main objective of fingerprint align-

ment is to estimate the transformation parameters between input and reference fingerprints.

One such methodology is based on the generalized Hough transform [Ratha et al., 1996]. The

main disadvantage for such technique is the inaccuracy in the transformation estimation due

to discretization of the parameters space. A sufficiently small discretization step will lead to

exponential runtime thereby incresing the computational cost. Other approaches could be to use

brute force to check for all possible correspondences between minutiae pairs. There exists some

alignment techniques that augment minutiae with other supplementary features such as ridge

information, orientation fields around a small neighborhood of minutiae, geometric relationships

between minutiae and its neighbors, etc.

Alignment of full fingerprints is a well studied problem. But these methods are limited in

alignment accuracy due to quantization of transformation parameters, or are not adapted for

the partial fingerprint scenario. Most fingerprint matching algorithms in general assume ap-

proximately the same size of the minutiae set between the query and the reference minutiae for

good identification accuracy [Jea and Govindaraju, 2005]. Trying to align a partial fingerprint

to a full fingerprint only based on minutiae features could lead to errors.

In the first part of Dissertation, we focus on the problem of aligning a partial fingerprint

against a full fingerprint, especially of poor quality latents. Instead of minutiae, we used Ori-

entation Fields (OF) to perform the alignment. We reduce fingerprint images to orientation
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images, and we look at the alignment problem as registering the partial fingerprint orientation

image into the full fingerprint orientation image. The OF representing the flow of ridges is a

relatively stable global feature of fingerprint images, and it represents the intrinsic nature of

the fingerprint. The representative OF of a fingerprint is very less affected by the type of cap-

ture device, contrast variations, and other quality effects compared to the input image or the

minutiae.

1.8. Extended Feature Sets

Even though the friction ridge analysis methodology follows a pre-defined set of rules (as

detailed in Section 1.4), there are some problems reported by the forensic community in these

practices. Two major problems in friction ridge analysis as reported in [Hicklin, 2007] are as

follows:

1. Latent AFIS searches are limited by over simplified feature set.

2. During the latent examiner comparison, there are no standard format to document the

features used in comparison decision. This leads to difficulty with future reference or

interchange with other forensic examiners.

AFIS uses only a limited types of features automatically extracted from the fingerprints

using a feature extraction algorithm. On the other hand, forensic examiners use rich set of

features during manual comparison as compared against AFIS comparisons. This could be a

possible reason why manual comparisons outperforms AFIS comparisons [Jain, 2010]. Any fea-

tures that are not currently used by commercial AFIS are generally termed as Extended Feature

Set (EFS) [Zhao and Jain, 2010]. The use of EFS by forensic examiners in manual comparison

decision is much debated, mainly due to non-repeatability by another examiner to validate the

previous decision.

SWGFAST (Scientific Working Group on Friction Ridge Analysis, Study, and Technology)

drafted a memo to NIST noting that forensic examiners use features that are not currently

addressed in fingerprint standards. The ANSI/NIST Standard Workshop II charted the Com-

mittee to Define an Extended Fingerprint Feature Set (CDEFFS). The CDEFFS included 45

members from various federal agencies, latent community, AFIS vendors, and academia [Hicklin,

2007]. The purpose of CDEFFS is to define a standard to completely represent the distinctive

information in the fingerprint which are quantifiable, repeatable and develop a clear method

of characterizing information for: 1) forensic examiner initiated AFIS searches, and 2) forensic

examiner markup and exchange of latent fingerprints.

Many commercial minutiae-based matchers mostly use only two prominent ridge character-

istics namely ridge-endings and bifurcations. To use EFS in automated systems, reliable feature

extraction algorithms are mandatory. Many law enforcement agencies follow a 500 ppi scanning
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resolution for fingerprint images to be used in AFIS. With such a resolution, it is difficult to

reliably extract many of the extended features automatically. Due to advances in fingerprint

scanning technologies, SWGFAST during ANSI/NIST Fingerprint Standard Update Workshop

in 2005 proposed 1000 ppi as minimum scanning resolution for fingerprint images.

In the second part of Dissertation, we focus on the problem of using EFS in a typical minutiae-

based matcher. We propose a method to improve the identification accuracy of minutiae-based

matchers for partial latent fingerprints by incorporating reliably extracted rare minutiae features.

Our proposed algorithm will modify the similarity scores of minutiae-based matchers based on

the presence of rare minutia features like fragments, enclosures, dots, interruptions, etc. The

weights that we multiply to modify the similarity scores are obtained by both the derived entropy

and probability of occurrence of rare minutia features. The decision for a match or non-match

is automatically estimated based on least squares fitting of an affine transformationbetween the

latent minutiae set and tenprint minutiae set.

1.9. Evidence evaluation from AFIS similarity scores

In the area of forensic biometrics, interpretation of forensic evidences, and evidence evalua-

tion from the similarity scores generated by a biometric system is a topic of importance. The

uniqueness of fingerprint is not an established fact but is only an empirical observation. There

is a widespread concern about the scientific basis underlying the individuality of fingerprints,

especially when using in the court of law. Evidence evaluation using a Bayesian probabilistic

framework has been proposed in recent years as a logical and appropriate way to report evidence

to a court of law [Aitken and Taroni, 2004]. In Bayesian approach, a likelihood ratio is computed

to represent the value of the evidence, and to be reported to a court of law. This framework

clearly complies with the requirements of modern forensic science [Saks and Koehler, 2005]: it is

scientifically sound (transparent procedures, testability, formally correct), and clearly separates

the competences of the forensic examiner and the court.

The establishment of this Bayesian evaluative framework has motivated the convergence of

pattern recognition and machine learning approaches to yield probabilistic outputs in the form

of likelihood ratios. A common architecture for this considers two steps: first, the computation

of a discriminating score between two evidential materials (e.g., a fingermark in the crime scene

and a fingerprint from a known suspect), which can be performed by standard minutiae-based

fingerprint matcher; and second, the transformation of the similarity score into a likelihood

ratio. This process of transforming scores relating two pieces of evidence into likelihood ratios

has been dubbed calibration [Brümmer and du Preez, 2006; Ramos and Gonzalez-Rodriguez,

2013; vanLeeuwen and Brümmer, 2007].
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In this Dissertation, we focus on this problem of evidence evaluation, address its importance,

and propose a solution to evaluate the forensic evidence in the light of the method proposed

to improve the identification accuracies of minutiae-based matcher by incorporating extended

fingerprint features. Moreover, we will show how the incorporation of rare minutiae improve the

performance of the system, also at the level of forensic interpretation.

1.10. Latent fingerprint evaluation

Fingerprint matching is the process by which the discriminatory features of two fingerprints

are compared to determine whether they came from same finger or from different fingers. The

extraction of discriminatory features of a given fingerprint can be done manually or using au-

tomated algorithms. Similarly, matching can also be manual, automatic or semi-automatic.

“Lights-Out” and “Semi Lights-Out” systems are used to generate a shortlist of suspects from a

criminal database stored in AFIS. In friction ridge analysis, both feature extraction and match-

ing are manually performed by forensic examiners for individualization. In the present section,

we summarize key results from international evaluations on latent fingerprint recognition in both

“Lights-Out” and ‘Semi Lights-Out” mode.

1.10.1. Performance evaluation : CMC

In latent fingerprint identification, it is common practice to evaluate the performance of

different latent AFIS with respect to its rank identification accuracies. The Cumulative Match

Characteristics (CMC) curve plots the probability of identification against the returned 1 : N

candidate list size. Rank-k identification accuracy shows the probability that a given user

appears in a k-sized candidate list. In the CMC plot, the horizontal axis represents the rank k,

and the vertical axis represents the identification probability in a k-sized rank list [Bolle et al.,

2005; Moon and Phillips, 2001].

1.10.2. Lights-Out mode

Current practice in latent AFIS technology involves marking the latent fingerprint features

manually by forensic examiner, then use the latent fingerprint image and the manually marked

features to search in the AFIS for possible list of suspects. To avoid this burden of manual

marking and with the hope to automate the latent AFIS in Lights-Out mode, NIST conducted

a public evaluation of commercial AFIS performance in Lights-Out mode. This was a multi-

phase open project called Evaluation of Latent Fingerprint Technologies (ELFT) [NIST-ELFT,

2013]. The results of various phases of ELFT are summarized in Table 1.1. The reported

accuracies from Phase-I and Phase-II of ELFT cannot be directly compared as the database

and the quality of the latents were different. In [Indovina et al., 2011a], it is concluded that

only a limited class of latents benefits from automated procedures, and still manual intervention
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Phase of ELFT Database size
Best Rank-1

accuracy

Phase-I

[NIST-ELFT-1, 2007]

100 latents compared against

10,000 rolled prints
80.0%

Phase-II, Evaluation-1

[Indovina et al., 2009]

835 latents compared against

100,000 rolled prints
97.2%

Phase-II, Evaluation-2

[Indovina et al., 2012a]

1,114 latents compared against

100,000 rolled prints
63.4%

Table 1.1: Summary of NIST Evaluation of Latent Fingerprint Technologies (ELFT) results.

ELFT-EFS Database size
Best Rank-1

accuracy

Evaluation-1

[Indovina et al., 2011b]

1,114 latents compared against

1,000,000 rolled prints and

1,000,000 plain prints

66.7%

Evaluation-2

[Indovina et al., 2012b]

[Indovina et al., 2012c]

1,066 latents compared against

1,000,000 rolled prints and

1,000,000 plain prints

71.4%

Table 1.2: Rank-1 identification accuracy of NIST Evaluation of Latent Fingerprint Technologies -

Extended Feature Sets (ELFT-EFS).

is necessary. The procedures of marking the minutiae, determining the subjective quality of

latents, etc still need to be carried out manually.

1.10.3. Semi Lights-Out mode

To determine the effectiveness of forensic examiner marked latent fingerprint features on the

latent identification accuracy, another public evaluation known as ELFT-EFS was launched.

ELFT-EFS was conducted in a “Semi Lights-Out” mode as compared to “Lights-Out” mode for

ELFT. NIST conducted two evaluations for ELFT-EFS and the best achieved Rank-1 identifi-

cation accuracy for each of the evaluations is summarized in Table 1.2. As in ELFT, the results

of different evaluations in ELFT-EFS cannot be directly compared because the database used

were not exactly the same [Indovina et al., 2012b] [Indovina et al., 2011b]. In [Indovina et al.,

2012b], it is reported that though the highest measured accuracy achieved by any individual

matcher at Rank-1 was 71.4%, approximately 82% of the latents were matched at Rank-1 by one

17



Chapter 1. Introduction

or more matchers combined. This concludes the potential for additional accuracy improvement

through improved algorithms.

1.11. Motivation of the Thesis

The observations and results described before as well as the recommendations and new stan-

dards set forth by the forensic community have motivated the research carried out in this Thesis.

The research mainly focuses on improving the identification accuracies of existing minutiae-based

matchers, and also in developing a robust evidence evaluation based on the likelihood ratio model

which incorporates extended fingerprint feature sets. In particular, three major research lines

are carried out in this Thesis:

1. Pre-registration: The latent fingerprints obtained from the crime scenes are usually partial

in nature. Most of the available minutiae-based matchers are well adapted for full-to-full

fingerprint comparisons [Jea and Govindaraju, 2005]. Existing partial fingerprint matchers

either rely on derived secondary minutiae features such as relative minutiae information,

ridge skeleton information or other extended features [Fang et al., 2007; Jain et al., 2007a;

Jea and Govindaraju, 2005; Wang and Hu, 2011]. When a partial query fingerprint minu-

tiae pattern needs to be compared against a full reference fingerprint minutiae pattern,

it will be advantageous to know the location of the partial minutiae pattern in the full

minutiae pattern. This will help to reduce the minutiae search space of full minutiae pat-

tern with respect to the size of partial minutiae pattern, thereby reducing the matching

scenario of partial-to-full comparison into full-to-full comparison where both the minutiae

patterns are almost of the same size.

2. Extended Feature Sets: The public evaluation of latent fingerprint matching technologies

in both fully automatic (ELFT) [Indovina et al., 2009, 2012a, 2011a; NIST-ELFT, 2013;

NIST-ELFT-1, 2007] and semi-automatic mode (ELFT-EFS) [Indovina et al., 2012b,c,

2011b] conducted by NIST concluded that human intervention is inevitable in case of

latent fingerprint matching, and also the use of extended fingerprint feature sets reliably

extracted manually have contributed towards improving the latent fingerprint matching

performances. More research into the use of EFS towards improving the identification

accuracy is needed [Jain, 2010].

3. Evidence evaluation: The uniqueness of a fingerprint is not an established fact but only an

empirical observation. There is a widespread concern about the scientific basis underlying

the individuality of fingerprints, especially when using them in the court of law. Many

individualization models for fingerprints have been proposed in the research literature.

However, there is no scientific framework in use at the criminal justice system to char-

acterize the uncertainty involved in the friction ridge analysis methodology, as well as to

express the strength of opinion of the forensic examiner quantitatively [NIST-EWG, 2012;
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Srihari, 2013]. Such a requirement has been articulated in several influential reports like

the National Research Council 2009 report [NAS-NRC, 2009]. The new paradigm com-

ing forward in this regard [Saks and Koehler, 2005] avoids hard identification decisions

by considering evidence reporting methods that incorporate uncertainty and statistics.

Among all the methods for evidence evaluation, the likelihood ratio is receiving greater

attention [Aitken et al., 2011; Srihari, 2013].

1.12. The Thesis and main contributions

The Thesis developed in this Dissertation can be stated as follows:

When comparing a partial fingerprint minutiae pattern against a full fingerprint minutiae

pattern, it is advantageous to know in advance where the partial pattern is located in

the full pattern so as to reduce the matching error, thereby improving the identification

accuracy. Additionally, together with the typical automatically extracted minutiae, the

use of reliably extracted Extended Feature Sets for fingerprints also help in improving

both the identification accuracy and the computation of Likelihood Ratios for statistical

evidence evaluation.

The technical contributions of this work are:

Pre-registration using orientation field : We proposed a new correlation-based hierarchical

registration method for orientation images to register a partial fingerprint in a full finger-

print. To register a partial fingerprint against a full fingerprint based on minutiae alone is

a hard problem. Most minutiae-based alignment techniques rely on reference points such

as core or delta singular points. In partial latent fingerprints, presence of these singular

points are not always guaranteed. So, for reliable alignment, we made use of orientation

fields of the fingerprint. The orientation field representing the flow of ridges is a relatively

stable global feature of fingerprint images, and it represents the intrinsic nature of the

fingerprint. The representative orientation field of a fingerprint is very less affected by the

type of capture device, contrast variations, and other quality effects compared to the input

image or the minutiae.

Best representative orientation field : We concluded the best representative orientation

fields for latent fingerprints and tenprint fingerprints. Several methods exist to estimate

the orientation fields of a given fingerprint. Depending on the type of fingerprint, i.e,

latent or tenprint, different orientation estimation strategies need to be used for better

registration accuracy.

Affine transform based fitting error : We developed a method to make use of reliably ex-

tracted rare minutiae features to modify the similarity scores of minutiae-based fingerprint
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matchers which significantly improves the rank identification accuracies. Based on the least

square fitting error to transform the partial fingerprint minutiae pattern and the full fin-

gerprint minutiae pattern with the rare minutiae as reference point, the similarity scores

of matchers are modified. This leads to significant improvement in the rank identification

accuracies.

Likelihood ratio model : We proposed a robust evidence evaluation from AFIS similarity

scores based on likelihood ratio. We showed how the incorporation of rare minutiae fea-

tures improve the performance of the minutiae-based matcher and thereby the forensic

interpretations.

1.13. Outline of the Dissertation

The main objectives of this PhD Thesis are as follows: 1) reviewing and studying the problem

of partial fingerprint pre-registration, use of extended feature sets in latent fingerprint matching,

and likelihood ratio based fingerprint evidence evaluation; 2) developing algorithms to improve

the rank identification accuracies of minutiae-based matchers based on pre-registration and in-

corporating rare minutiae features; 3) experimental demonstration of the developed algorithms

to real casework forensic fingerprint databases.

This Dissertation is structured according to a traditional complex type wherein each of the

major research problems are presented in separate parts consisting of introduction, related works,

algorithm and experiments in which the developed methods are applied [Paltridge, 2002]. The

chapter structure is as follows:

Chapter 1 introduces the topic of latent fingerprint recognition in forensic scenario, and

the major challenges faced by the state-of-the-art methodologies, and gives the motivation,

outline and contributions of this PhD Thesis.

Chapter 2 introduces about the pre-registration of latent fingerprints against a tenprint

fingerprint based on orientation fields, and reviews related works on fingerprint registration

followed by a brief description about the forensic fingerprint database used in experiments

for pre-registration.

Chapter 3 describes the algorithm developed for registering the partial fingerprint in a full

fingerprint, followed by experimental demonstration of the performance improvement of

minutiae-based matchers when incorporating our proposed algorithm.

Chapter 4 introduces about the use of Extended Feature Sets in fingerprints to improve

the identification accuracy of latent AFIS, reviews related works in the use of extended fea-

tures, followed by a description of the forensic fingerprint database obtained from Guardia

Civil which contains rare minutiae features.
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Figure 1.4: Dependence among different chapters.

Chapter 5 describes the algorithm developed based on affine transformation to improve the

identification accuracy of minutiae-based matchers by incorporating reliably extracted rare

minutiae features. This is supported with experimental demonstration of the improvements

in rank identification accuracies of minutiae-based matchers.

Chapter 6 addresses the issue of the interpretation of forensic evidence from scores com-

puted by a biometric system, and addressing it using the proposed system developed to in-

corporate rare minutiae features to improve the rank identification accuracies of minutiae-

based matchers. Various likelihood ratio computation methods are discussed.

Chapter 7 describes the proposed solution to evaluate the forensic evidence using a like-

lihood ratio framework. We used score normalization to rectify the misalignment of the

similarity scores computed by the biometric system, abd then experimentally demonstrate

the best LR computation method for the proposed rare minutiae-based similarity proposed

in Chapter 5.

Chapter 8 concludes the Dissertation summarizing the main results obtained and outlining

future research lines.
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The dependence between the chapters is illustrated in Figure 1.4. Part I and Part II of the

Dissertation can be read independently as they are almost self contained. The experimental

chapters should always be preceded by its introduction chapter.

1.14. Detailed research contributions

A list of the research contributions of this PhD Thesis is provided in this Section. Some

publications appear in several items of the list.

1. Literature Review

Pre-registration using orientation field.

R. P. Krish, J. Fierrez, D. Ramos, J. Ortega-Garcia and J. Bigun, “Partial Finger-

print Registration for Forensics using Minutiae-Generated Orientation Fields”, in

2nd International Workshop on Biometrics and Forensics, Valletta, Malta, March

2014 [Krish et al., 2014a].

(Selected as one of the best papers in IWBF-2014)

R. P. Krish, J. Fierrez, D. Ramos, J. Ortega-Garcia and J. Bigun, “Pre-Registration

for Improved Latent Fingerprint Identification”, in Proc. IAPR/IEEE 22nd Int.

Conf. on Pattern Recognition, ICPR, pp. 696-701, Stockholm, SWEDEN, August

2014 [Krish et al., 2014b].

Rare-minutiae features.

R. P. Krish, J. Fierrez, D. Ramos and R. Wang, “On the importance of rare features

in AFIS-ranked latent fingerprint matched templates”, in Proc. 47th IEEE Interna-

tional Carnahan Conference on Security Technology (ICCST), Medellin, Colombia,

October 2013 [Krish et al., 2013c].

Affine transform based fitting error, and likelihood ratio framework for evidence evaluation.

R. P. Krish, J. Fierrez, D. Ramos, J. Ortega-Garcia, “Improving Automated Latent

Fingerprint Identification using Extended Feature Sets”, Forensic Science Interna-

tional, 2015, (Submitted and under review) [Krish et al., 2015].

D. Ramos, J. Fierrez, R. P. Krish, F. J. Gomez-Herrero, “Evidence Evaluation using

AFIS scores: Integrating Rare Features”, IET Biometrics, 2015 (Under Prepara-

tion) [Ramos et al., 2015]
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2. Theoretical Framework

Theoretical framework to register the partial fingerprint orientation field and full finger-

print orientation field.

R. P. Krish, J. Fierrez, D. Ramos, J. Ortega-Garcia and J. Bigun, “Pre-Registration

of Latent Fingerprints based on Orientation Field”, IET Biometrics, pp. 1-11,

January 2015 [Krish. et al., 2015].

Theoretical framework for least square fitting error based on affine transformation.

R. P. Krish, J. Fierrez, D. Ramos, J. Ortega-Garcia, “Improving Automated Latent

Fingerprint Identification using Extended Feature Sets”, Forensic Science Interna-

tional, 2015, (Submitted and under review) [Krish et al., 2015].

R. P. Krish, J. Fierrez, D. Ramos and R. Wang, “On the importance of rare features

in AFIS-ranked latent fingerprint matched templates”, in Proc. 47th IEEE Interna-

tional Carnahan Conference on Security Technology (ICCST), Medellin, Colombia,

October 2013 [Krish et al., 2013c].

Likelihood Ratio based evidence evaluation.

D. Ramos, J. Fierrez, R. P. Krish, F. J. Gomez-Herrero, “Evidence Evaluation using

AFIS scores: Integrating Rare Features”, IET Biometrics, 2015 (Under Prepara-

tion) [Ramos et al., 2015]

3. Novel Methods

Registration with correlation based similarity measure decided based on both phase and

magnitude of the correlated orientation images.

R. P. Krish, J. Fierrez, D. Ramos, J. Ortega-Garcia and J. Bigun, “Partial Finger-

print Registration for Forensics using Minutiae-Generated Orientation Fields”, in

2nd International Workshop on Biometrics and Forensics, Valletta, Malta, March

2014 [Krish et al., 2014a].
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Hierarchical registration based on correlation, Manhattan and Euclidean based distance,

Orientation consistency.

R. P. Krish, J. Fierrez, D. Ramos, J. Ortega-Garcia and J. Bigun, “Pre-Registration

of Latent Fingerprints based on Orientation Field”, IET Biometrics, pp. 1-11,

January 2015 [Krish. et al., 2015].

4. Novel Database

Real forensic fingerprint casework database obtained from Guardia Civil.

R. P. Krish, J. Fierrez, D. Ramos, R. Veldhuis and R. Wang, “Evaluation of AFIS-

ranked latent fingerprint matched template”, in Proc. 6th Pacific-Aim Symposium

on Image and Video Technology, Guanajuato, Mexico, Springer LNCS-8333, pp.

230-241, November 2013 [Krish et al., 2013b].

5. New Experimental Studies

Experimental demonstration of best representative orientation fields for both latent

and tenprint Fingerprints.

Significant improvement in the rank identification accuracies for minutiae-based match-

ers when incorporating hierarchical pre-registration.

R. P. Krish, J. Fierrez, D. Ramos, J. Ortega-Garcia and J. Bigun, “Pre-Registration

of Latent Fingerprints based on Orientation Field”, IET Biometrics, pp. 1-11,

January 2015 [Krish. et al., 2015].

Importance of rare minutiae in matched template.

Affine transform based least square fitting error as similarity measure for matched

templates.
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R. P. Krish, J. Fierrez, D. Ramos and R. Wang, “On the importance of rare features

in AFIS-ranked latent fingerprint matched templates”, in Proc. 47th IEEE Interna-

tional Carnahan Conference on Security Technology (ICCST), Medellin, Colombia,

October 2013 [Krish et al., 2013c].

R. P. Krish, J. Fierrez, D. Ramos, R. Veldhuis and R. Wang, “Evaluation of AFIS-

ranked latent fingerprint matched template”, in Proc. 6th Pacific-Aim Symposium

on Image and Video Technology, Guanajuato, Mexico, Springer LNCS-8333, pp.

230-241, November 2013 [Krish et al., 2013b].

Other contributions not directly related with this Thesis, and not included in the Dissertation

includes:

1. Palmprint Recognition

R. Wang, D. Ramos, J. Fierrez and R. P. Krish, ”Automatic Region Segmentation

for High-Resolution Palmprint Recognition: Towards Forensic Scenarios”, in Proc.

47th IEEE International Carnahan Conference on Security Technology (ICCST),

Medellin, Colombia, October 2013 [Wang et al., 2013a].

R. Wang, D. Ramos, J. Fierrez and R. P. Krish, ”Towards Regional Fusion for

High-Resolution Palmprint Recognition”, in Proc. XXVI SIBGRAPI conference on

Graphics, Patterns and Images, Arequipa, Peru, August 2013 [Wang et al., 2013b].

2. Online Signature Verification

R. P. Krish, J. Fierrez, J. Galbally and M. Martinez-Diaz, ”Dynamic Signature

Verification on Smart Phones”, in Proc. Workshop on User-Centric Technologies

and Applications, PAAMS, Salamanca, SPAIN, May 2013 [Krish et al., 2013a].

M. Martinez-Diaz, J. Fierrez, R. P. Krish and J. Galbally, ”Mobile Signature Veri-

fication: Feature Robustness and Performance Comparison”, IET Biometrics, Vol.

3, n. 4, pp. 267-277, December 2014 [Martinez-Diaz et al., 2014]
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Part I

Partial Fingerprint Registration

Based on Orientation Field
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Chapter 2

Related works and motivation for

fingerprint pre-registration

This chapter begins with an overview of Automated Fingerprint Identification Systems

(AFIS) development history, the drawbacks of currently existing AFIS in forensic applications,

and recent developments in improving latent AFIS through Next Generation Identification sys-

tems. We then discuss about the importance of fingerprints as an important piece of evidence in

forensic applications, as well as fingerprint’s use in commercial applications. We review about

different types of fingerprint matching techniques currently employed by automated fingerprint

matchers, and also the importance of alignment as an important pre-processing stage in matching

for improved performance. The limitations for adapting currently existing alignment methods

to partial fingerprint recognition are discussed. The challenges faced by matching algorithms

when comparing partial fingerprint against full fingerprint as well as some currently existing

partial fingerprint matchers are reviewed. The Evaluation of Latent Fingerprint Technologies

(ELFT) conducted by NIST to understand the feasibility of completely automated capability of

commercial latent AFIS, and the conclusions derived from these evaluation are discussed.

We discuss about the discriminating ability of orientation fields in fingerprints, and how

they are robust against fingerprint image quality. An overview of our orientation field based

pre-registration algorithm which helps in significantly improving the identification accuracies of

minutiae-based automated fingerprint matchers is discussed. We then review the works related

with fingerprint registration already existing in the research literature and their limitations in

adapting them for partial fingerprint registration. We conclude this chapter by providing a

brief overview of the NIST-SD27 database used in our experiments. The detailed description

of our proposed pre-registration algorithm and various experiments supporting their usefulness

are provided in Chapter 3.
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2.1. Automated Fingerprint Identification Systems

The projects to develop Automated Fingerprint Identification Systems (AFIS) started in

early 1960s. These were initiated by the FBI in the United States, the Home Office in the

United Kingdom, Paris Police in France, and the Japanese National Police. The emerging tech-

nology in electronic digital computers fostered the research towards assisting or replacing the

labor-intensive process of classifying, searching, and matching tenprint cards used for personal

identification [Holder et al., 2011].

Any impression made by the friction ridge skin of the human finger is generally termed as

fingerprint. Fingerprints which are revealed using some chemical or optical processing from a

crime scene are called latent fingerprints. These are unintentionally left fingerprints found in

the crime scenes. The latent fingerprints are then photographed, marked up for discriminatory

features by a forensic fingerprint examiners, and are used to search by AFIS. Law enforcement

agencies maintain a huge database of the fingerprints of individuals who are arrested or impris-

oned. The forensic fingerprint database are typically collected by obtaining a rolled fingerprints

from each finger. Such fingerprints in the database are called tenprints or exemplars fingerprints.

When a latent fingerprint is found, the criminal investigators first search for the suspect in an

AFIS to establish the identity of the individual to link with a particular criminal record. If there

is a match, then the individual is linked to the crime under investigation.

In the realm of forensic analysis (criminology), the use of latent fingerprints is a routine

procedure to identify suspects. Such practice has been followed for over a century now, and has

most of the time proven to be pertinent in identifying the suspects. Consequently, the identity

of an individual established on the basis of fingerprints is accepted by law enforcement agen-

cies [Holder et al., 2011] [Maltoni et al., 2009].

Fingerprints are also widely used in civilian biometric recognition applications such as au-

thentication, passport controls, biometric based digital identity, etc. Since the fingerprint is

one of the oldest biometric traits, many techniques have been proposed in the literature for

fingerprint recognition. It is comparatively a mature biometric trait compared against face, iris,

voice, etc. AFIS are widely used for fingerprint recognition in both forensic as well as commer-

cial domains. Most AFIS currently use two prominent ridge characteristics (called minutiae)

namely ridge-endings and bifurcations to compare fingerprints. The minutiae-based decision is

accepted as a proof of identity legally by courts in almost all countries around the world [Holder

et al., 2011] [Maltoni et al., 2009].

There will also be situations where the latent fingerprints remains unidentified, typically

referred as an Unsolved Latent File (ULF). As new exemplars are added into the AFIS, criminal

investigators match them against ULF with the hope to find a match. It is possible that an

30



Chapter 2. Pre-Registration 2.1 Automated Fingerprint Identification Systems

Figure 2.1: IAFIS segments : An illustration of Integrated Automated Fingerprint Identification Sys-

tems [Holder et al., 2011]

.

ULF from one jurisdiction can match a tenprint record stored in the AFIS database of another

jurisdiction. A framework to integrate the AFIS databases from different jurisdictions and a

combined search will maximize the chance of making a match. An example for such a framework

is the Integrated-AFIS (IAFIS) maintained by Federal Bureau of Investigation (FBI) of United

States of America (Figure 2.1).

2.1.1. Integrated-AFIS and Next Generation Identification systems

The Integrated Automated Fingerprint Identification Systems (IAFIS) is the worlds largest

collection of criminal history information maintained by FBI. IAFIS provides automated fin-

gerprint search capabilities, latent search capability, electronic image storage, and electronic

exchange of fingerprints and responses [FBI-IAFIS]. The IAFIS not only maintains fingerprints,

but also the corresponding criminal histories, mug shots, scars and tattoo photos, physical char-

acteristics like height, weight, and hair and eye color, and aliases.

IAFIS consists of three integrated segments: the Identification Tasking and Networking

(ITN) segment, the Interstate Identification Index (III), and AFIS (Figure 2.1). The ITN seg-

ment provide workflow management for tenprint, latent print and document processing. The III

provides subject search, computerized criminal history, and criminal photo storage and retrieval.

The AFIS searches the FBI fingerprint repository for matches to tenprint and latent fingerprints.
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Major drawbacks to IAFIS are that it cannot store and search palmprints, accept and store

1,000-pixels-per-inch tenprint images. Towards meeting up with this end, FBI has started a

project known as the Next Generation Identification Program (NGI). This program will further

advance the FBI’s biometric identification services, providing an incremental replacement of

current IAFIS technical capabilities while introducing new functionality. The NGI system will

offer state-of-the-art biometric identification services and provide a flexible framework of core

capabilities that will serve as a platform for multimodal functionality [Holder et al., 2011]. In

future, IAFIS will be replaced with NGI.

2.2. Minutiae matching and alignment

In general, depending on the nature of the feature used by matching algorithms, fingerprint

matching can be broadly classified into correlation-based matching, minutiae-based matching

and non-minutiae feature-based matching [Maltoni et al., 2009].

In correlation-based matching, gray scale fingerprint images of both input and reference

are superimposed and pixel correlations are computed between them.

In minutiae-based matching, minutiae stored as sets of points are compared using point

pattern matching algorithms.

In non-minutiae feature-based matching, other features of fingerprints such as orientation

fields, frequency maps, ridge shapes, texture information etc, are used for matching the

input and the reference.

Irrespective of the core methodology used for fingerprint matching, the alignment between the

input and the reference fingerprint is a crucial step. This is because the fingerprint images cap-

tured in different instances might have different rotation, translation or non-linear deformation

between them. The main objective of fingerprint alignment is to estimate the transformation

parameters between input and reference fingerprints.

There are two main approaches in pre-alignment, namely: absolute pre-alignment and relative

pre-alignment [Maltoni et al., 2009]. The orientation field based registration in this work falls

under the category of relative pre-alignment.

In absolute pre-alignment, the reference fingerprints are pre-aligned independently of the

input fingerprint before storing in the database. The input fingerprint is pre-aligned just

once before any comparisons are performed with the reference fingerprints. For absolute

pre-alignment, the most common technique is to translate the fingerprint according to

position of the core point. There are also other techniques which focus on absolute pre-

alignment based on the shape of the external fingerprint silhouette, orientation of delta or
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Figure 2.2: A generalized Hough transform based alignment. a) and b) shows the minutiae extracted

from input and reference fingerprint; c) input and reference minutiae superimposed; d) circles denotes

minutiae pairs mated using generalized Hough transform technique [Maltoni et al., 2009].

core points, or average orientations in the neighborhood of cores. Since all these absolute

pre-alignment depends on the singular points, and for latent fingerprints singular points

are not guaranteed, absolute pre-alignment is not possible for latent scenario.

In relative pre-alignment, the input fingerprint has to be pre-aligned with respect to the ref-

erence fingerprints while matching. The most common techniques in relative pre-alignment

are performed by superimposing the singular points (core or delta), by comparing ridge

features or by correlating the orientation images. Superimposing singular points are not

feasible in latent scenario as they are not always guaranteed in latent fingerprint images.

The ridge features, i.e, length and orientation of the ridge on which a minutiae resides,

seem to be possible feature candidate but a reliable extraction of ridge features from bad

or ugly quality latent fingerprints is a challenging problem. Estimation of orientation field

is more reliable as compared against ridge feature extraction in latent fingerprints. So, we

used the method of correlating the orientation images in this work to register a partial

fingerprint in a full fingerprint.

The most widely used alignment method is based on minutiae. The main idea behind

minutiae-based alignment is to search in the space of transformation parameters to find an opti-

mal transformation with the maximum number of matched minutiae between the input and the

reference fingerprints (Figure 2.2). One such methodology is based on the generalized Hough

transform [Ratha et al., 1996]. The main disadvantage for such technique is the inaccuracy in

the transformation estimation due to discretization of the parameters space. Other approaches
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could be to use brute force to check for all possible correspondences between minutiae pairs.

There exists some alignment techniques that augment minutiae with other supplementary fea-

tures such as ridge information, orientation fields around a small neighborhood of minutiae,

geometric relationships between minutiae and its neighbors, etc.

Alignment of full fingerprints is a well studied problem. But these methods are limited in

alignment accuracy due to quantization of transformation parameters, or are not adapted for

the partial fingerprint scenario. Partial fingerprints can arise in a number of situations, for

example [Jea and Govindaraju, 2005] [Wang and Hu, 2011]: latent fingerprints lifted from crime

scenes, due to small size of the fingerprint capturing devices, or an already enrolled fingerprint

has noisy regions and is left only with a partial good/recognizable region for identification. The

performance of the existing partial fingerprint identification systems mainly depends on the im-

age quality, the number of minutiae available and other derived and extended features that can

be obtained from the partial fingerprint region.

Various approaches in partial fingerprint identification [Wang and Hu, 2011] include:

the use of localized secondary features derived from relative minutia information [Jea and

Govindaraju, 2005].

using representative points along ridge lines in addition to minutiae [Fang et al., 2007].

use of Level-3 features such as dots and incipients [Jain et al., 2007a].

Most fingerprint matching algorithms in general assume approximately the same size of the

minutiae set between the query and the reference minutiae for good identification accuracy [Jea

and Govindaraju, 2005]. It is nevertheless frequent in some scenarios to have very different sizes

between query and reference due to the situations discussed above. Trying to align a partial

fingerprint to a full fingerprint only based on minutiae features could lead to errors. Law en-

forcement agencies employ AFIS to shortlist the suspects from its criminal database (exemplar

/ tenprint fingerprints). In such a scenario, it is crucial that the performance accuracy of AFIS

is as good as possible. Latent fingerprints inherently are of poor quality, which leads to poor

identification accuracy of AFIS in the latent scenario as compared to full fingerprint identifica-

tion.

To evaluate the performance of feature extraction and matching techniques of commercial

AFIS, NIST has conducted a multi-phase open project called Evaluation of Latent Fingerprint

Technologies (ELFT) [NIST-ELFT, 2013].

In Phase-I of ELFT, the best performing system reported a Rank-1 identification accuracy

of 80% in which 100 latents were compared against 10, 000 rolled prints [NIST-ELFT-1,

2007].
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In Phase-II, Evaluation-1, the best performing system reported a Rank-1 identification ac-

curacy of 97.2% in which 835 latents were compared against 100, 000 rolled prints [Indovina

et al., 2009],

in Phase-II, Evaluation-2, the best performing system reported a Rank-1 identification

accuracy of only 63.4% in which 1, 114 latents were compared against 100, 000 rolled

prints [Indovina et al., 2012a].

The reported accuracies from Phase-I and Phase-II cannot be directly compared as the

database and the quality of the latents were different. In [Indovina et al., 2011a], it is concluded

that only a limited class of latents benefits from automated procedures, but the procedures of

marking the minutiae, determining the subjective quality of latents, etc still need to be carried

out manually.

2.3. Motivation and proposed pre-registration technique

In this part of the thesis, we focus on the problem of aligning a partial fingerprint against a

full fingerprint, especially of poor quality latents. Instead of minutiae, we used orientation fields

(OF) to perform the alignment. We reduce fingerprint images to orientation images, and we

look at the alignment problem as registering the partial fingerprint orientation image into the

full fingerprint orientation image. Image registration is the process of overlaying (geometrically

align) images of the same scene acquired in different time, different viewpoints and from different

sensors [Brown, 1992; Lucas and Kanade, 1981].

Image registration is broadly classified into area-based and feature-based registration.

In area-based registration, no image features are detected and directly focuses on match-

ing stage. The matching strategy involves correlation-like methods or template matching,

Fourier methods, Mutual Information methods and optimization methods [Brown, 1992;

Maintz and Viergever, 1998; Zitova and Flusser, 2003].

In feature-based registration, salient structures from the image are extracted to perform

the matching. Feature-based registration is used when enough distinctive features are

available. The features are matched using spatial relations, invariant descriptors, relax-

ation methods etc. [Brown, 1992; Maintz and Viergever, 1998; Zitova and Flusser, 2003]

We used area-based registration in our work. The OF representing the flow of ridges is a

relatively stable global feature of fingerprint images, and it represents the intrinsic nature of the

fingerprint. The representative OF of a fingerprint is very less affected by the type of capture
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device, contrast variations, and other quality effects compared to the input image or the minu-

tiae. To improve the rank identification accuracy of minutiae-based matching, we consider only

the minutiae around the region where the partial fingerprint orientation image is registered in

the full fingerprint. This thereby reduces the search space of minutiae in the full fingerprint

to approximately the size of partial fingerprint minutiae set, and consequently improves the

performance of the minutiae-based matcher.

The main contributions of this work are as follows:

1. New correlation-based hierarchical registration method for orientation images to register

a partial fingerprint in a full fingerprint.

2. Experimental exploration of various types of orientation field generation methods adequate

for the registration.

3. Experimental demonstration of the performance improvement of minutiae-based match-

ing by incorporating our registration algorithm to reduce the search space of minutiae in

full fingerprints. In particular, our algorithm significantly improves the rank identification

accuracy for poor quality latents (Bad and Ugly category) of NIST-SD27 database using

NIST-Bozorth3 and MCC-SDK minutiae-based matchers.

In the following sections, we review related works on fingerprint orientation field based

registration, describe the database used in our experiments. In the next chapter, we describe

the similarity measures used in our algorithm, followed by a detailed description of the proposed

algorithm, experiments, results and discussions.

2.4. Related works

In this section, we review the orientation field based fingerprint registration techniques in the

literature, and its applicability in registering partial fingerprint images. A basic implementation

of orientation-image registration requires computing the similarity between the input orientation

image and the reference orientation image for every possible transformation considered between

them (e.g., rotation and translation) [Maltoni et al., 2009]. Table 2.1 summarizes various tech-

niques in the literature for orientation field based fingerprint registration together with their

limitations for partial fingerprint registration.

Liu et al. [2006] uses Normalized Mutual Information (NMI) as the similarity measure be-

tween orientation images to perform fingerprint registration. They align fingerprint images by

maximizing NMI between the input and reference orientation images under different transfor-

mations. This technique is not suitable in aligning a partial fingerprint against full fingerprint
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Method Core technique
Limitations in partial

fingerprint registration /

latent scenario

[Liu et al., 2006]

Maximize the Normalized

Mutual Information be-

tween input and reference

OF images

1) Needs large area overlaps

2) More reference sample re-

quired to correctly estimate

OF distribution

[Nilsson and Bigun,

2005]

1) Singular point (SP) detec-

tion

2) 1D radiograms

1) SP not guaranteed in par-

tial or latent fingerprints

2) Quantized projection an-

gles, and require large area

overlaps

[Yager and Amin,

2004] [Yager and

Amin, 2006]

1) Distinctive Local Orien-

tations

2) Generalized Hough

Transform

3) Steepest Descent

1) SP not guaranteed in par-

tial or latent fingerprints

2) Needs large area overlaps

Table 2.1: Summary of orientation field based fingerprint registration techniques in the literature together

with their limitations to be applied for partial fingerprint registration.

as reported in [Liu et al., 2006]. In this approach, for good alignment, the size of input and ref-

erence orientation images should be almost of similar size. Another drawback in this technique

is the necessity of enough samples of reference fingerprints to correctly estimate the distribution

of the orientation field, otherwise it leads to incorrect alignment. Both of these scenarios which

requires same size between input and reference, as well as training reference samples are not

pertinent in forensic fingerprint identification.

Nilsson and Bigun [2005] focus on registering the fingerprints by complex filtering and by 1D

projections of orientation images. Given the orientation images of the fingerprints represented

as complex orientation fields, they first use specific complex filters to locate singular points (core

and delta) in the fingerprint. Once these singular points are located in both input and reference

orientation images, transformation parameters (rotation and translation) are estimated by su-

perimposing the singular points.

Another technique studied in [Nilsson and Bigun, 2005] is 1D projections of orientation

images. In this method, the fingerprint image is decomposed into 6 equally spaced directions

called orientation images, and a Radon transformation is used to compute 1D projections of

these orientation images (called radiograms). A translation parameter is estimated between a

pair of radiograms from input and reference belonging to the same projection angle by a corre-

lation measure. When utilizing this method, it is already assumed that the rotation alignment
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between input and reference is negligible or is already corrected. These techniques cannot be

adapted to register partial fingerprints because singular points are not always guaranteed in

partial fingerprint, and the area of overlap between input and reference is often small.

Yager and Amin [2004, 2006] explore three types of orientation field registration techniques

summarized as follows:

1. Distinctive Local Orientations (DLO): This approach mainly depends on distinctive pat-

terns in the orientation field called singular points (core and delta). This is similar to the

work by Nilsson and Bigun [2005] except for the technique to locate the singular points.

2. Generalized Hough Transform (GHT): In this approach, the space of all possible transfor-

mation parameters is discretized and analyzed for the best transformation.

3. Steepest Descent (SD): Starting with some initial parameters, this algorithm evaluates a

cost function. It then evaluates a sample of local neighborhood in the parameter space and

selects the parameters that give greatest descent in the cost. This procedure is repeated

until a local minimum has been found.

It is reported by Yager and Amin [2004] that bothGHT and SD do not perform well when the

area of overlap between the input and reference is small, similar to the case using NMI [Liu et al.,

2006]. So, both GHT and SD are not suitable for partial fingerprint registration. Moreover,

DLO looks for singular points, and it is not assured that a partial fingerprint will have singular

point in it. So, all the orientation field registration techniques proposed in the literature are not

suitable for partial fingerprint registration, and cannot be quickly adapted to this scenario.

2.5. Database: NIST-SD27

NIST Special Database 27 (NIST-SD27) [Garris and McCabe, 2000] is a publicly available

forensic fingerprint database which comprises of 258 latent fingerprint images, its matching 258

tenprint images and their minutiae sets. The NIST-SD27 minutiae set database is classified into

two [Garris and McCabe, 2000] [Krish et al., 2013b]: 1) ideal, and 2) matched minutiae sets.

The ideal minutiae set for latents was manually extracted by a forensic examiner without

any prior knowledge of its corresponding tenprint image.

The ideal minutiae set for tenprints was initially extracted using an AFIS, and then these

minutiae were manually validated by at least two forensic examiners.

The matched minutiae set contains those minutiae which are in common between the

latent and its mated tenprint image. There is a one-to-one correspondence in the minutiae

between the latent and its mate in the matched minutia set. This ground truth (matched

minutiae set) was established manually by a forensic examiner looking at the images and

the ideal minutiae.
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(a) Good

(b) Bad (c) Ugly

Figure 2.3: Subjective quality classification of latent fingerprint images in NIST-SD27 database.
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The matched minutia sets are a subset of ideal minutia set, but the location and orien-

tation information are not exactly the same. There are slight variations in the location and

orientation attributes between ideal and its corresponding matched minutia set originated in

the annotations by the experts. For example, G028T1I and G028T1M of NIST-SD27 contain

123 and 20 minutiae respectively. G028T1I is the ideal minutia set and G028T1M is its cor-

responding matched minutia set. The pair (X,Y,Orientation) = (562, 189,−68) of ideal and

(564, 182,−73) of matched are supposed to be same minutia in the fingerprint. However there

is a slight variation with an euclidean distance of 7.2 pixel units. This variation might be be-

cause of the uncertainty introduced by the software used by the examiner while generating the

matched minutia set. In general, there is a small non-linear deformation between the ideal and

matched minutia sets of the tenprints.

The NIST-SD27 database consists of latent fingerprint images of varying quality. Each image

is of 800 × 768 pixels in size and has been scanned at 500 pixels per inch (ppi) as a gray scale

image. It already contains a classification of the latent fingerprints based on the subjective

quality of the image into Good, Bad and Ugly, containing 88, 85 and 85 fingerprints respectively

determined by the forensic examiner. The average number of minutiae for Good, Bad and Ugly

category latents are 32, 18 and 12 respectively. Figure 2.3 shows sample images from the NIST-

SD27 database which belong to Good, Bad and Ugly quality categories respectively. In [Jain and

Feng, 2011], it is shown that there is a correlation between this subjective quality classification

and the matching performance.

40



Chapter 3

Hierarchical pre-registration:

Algorithm and experiments

This chapter describes in detail the proposed hierarchical algorithm to register the orienta-

tion field of partial fingerprint to the orientation field of full fingerprint, and experimental results.

We discuss various orientation field based similarity measures used in our proposed algorithm

such as correlation, Manhattan and Euclidean based distance similarity adapted for orienta-

tions represented as complex numbers, and similarity based on orientation consistency. We then

explain in detail the proposed algorithm for pre-registration. Our algorithm is hierarchical in

nature, and are performed sequentially in two levels. The first level of our proposed algorithm

performs a normalized correlation based similarity, and in the second level, utilizes various other

similarity measures and performs score level fusions to finalize the partial fingerprint registration

on to the full fingerprint. In both levels, we use orientation fields to compute similarity measures.

We made use of various types of orientation field estimation methodologies for fingerprints

such as manual extraction, dictionary-based estimation, orientation reconstructed from minutiae,

orientation directly estimated from gray-scale fingerprint image, and an average of minutiae re-

constructed and image generated orientation field. An overview of all the methods together with

an experiment supporting the best representative orientation field for fingerprint is described.

This is followed with experiments which shows significant improvement of rank identification

accuracies of minutiae-based matchers namely, NIST-Bozorth3 and MCC-SDK when our pro-

posed hierarchical pre-registration is applied. The chapter concludes with runtime analysis and

discussions summarizing the usefulness of our proposed algorithm.
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3.1. Similarity measures

In this section, we introduce various similarity measures that are used in our hierarchical

registration algorithm.

Let U and V be discrete images of the same size, represented as a 2D array where the

array elements may represent values of gray pixels (zero-order tensors), color pixels (first-order

tensors) or local directions (second-order tensors).

The Schwarz inequality:

|〈U,V〉|
‖U‖ × ‖V‖

≤ 1 (3.1)

holds for U and V [Bigun, 2005, Chapter 3]. Here, 〈U,V〉 is the inner product between U and

V calculated as :

〈U,V〉 =
∑
r,c

U(r, c)∗ ·V(r, c) (3.2)

where r, c are the indices, U(r, c)∗ is the complex conjugate of U(r, c), and ‖U‖ and ‖V‖ are

the L2 norms of U and V respectively.

The L2 norm ‖U‖ is calculated as:

‖U‖ =

[∑
r,c

U(r, c)∗ ·U(r, c)

]1/2
(3.3)

and similarly for ‖V‖.

The normalized correlation between U and V, referred to as Schwarz Similarity (SS) here-

after is defined as:

SS(U,V) =
|〈U,V〉|
‖U‖ × ‖V‖

(3.4)

Because of Eq. (3.1), the interval for SS(U,V) is in the range [0, 1]. By calculating SS as

a similarity measure, we can locate a given pattern (a small image) in a large image. When

SS(U,V) is 1, then both U and V are viewed as most similar patterns, and when SS(U,V) is

0, they are least similar [Bigun, 2005].
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Assuming U and V represent local directions (second-order tensors) in the range [−90◦,+90◦),

we define the Manhattan-based Similarity MS(U,V) as

MS(U,V) = cos

(
1

N

∑
r,c

(
∆U,V
r,c

))
(3.5)

and Euclidean-based Similarity ES(U,V) as

ES(U,V) = cos

[ 1

N

∑
r,c

(
∆U,V
r,c

)2]1/2 (3.6)

where

∆U,V
r,c = min (|U(r, c)−V(r, c)|, 180− |U(r, c)−V(r, c)|) (3.7)

∆U,V
r,c takes values in the range [0,+90◦) and N is the size in pixels of U or V (U and V are

of same size). Because of Eq. (3.7), the value of MS and ES will be in the range [0, 1].

The Consistency Similarity CS(U,V) (which was proposed in [Jiang et al., 2006]) between

U and V is defined as:

CS(U,V) =
1

N

∣∣∣∣∣∑
r,c

ei2(U(r,c)−V(r,c))

∣∣∣∣∣ (3.8)

where i is the complex number
√
−1, and |z| is the magnitude of complex number z. The con-

sistency similarity CS averages the unit vector whose phase is doubled orientation difference,

and the value is in the range [0, 1].

All the similarity measures SS,MS,ES and CS are in the normalized range [0, 1] and these

measures can be fused directly.

3.2. Algorithm

The algorithm to register the orientation field of the latent fingerprint with that of the

tenprint fingerprint is achieved in two hierarchical levels. In the first level, we perform the

normalized correlation between the OF of latent and tenprint for various rotation alignments

in the range [−45◦,+45◦] with 1◦ increments. We then shortlist the correlation peaks for each

rotation. These peaks are the possible target locations for registration.

43



Chapter 3. Hierarchical pre-registration

We observed that deciding the target location only based on the normalized correlation score

does not always yield satisfactory results. Therefore, a second level, on these candidate loca-

tions, we calculate MS,ES and CS similarity measures between the latent centered at the peak

location in the tenprint. The final registration location is chosen from the candidate locations

as the one that maximizes the mean similarity between SS,MS,ES and CS. This gives better

registration accuracies than deciding only based on SS. In the following section we describe this

approach in more detail.

3.2.1. Level 1: Normalized correlation

Step 1: Generate the orientation field L for the latent fingerprint and T for the tenprint

fingerprint as detailed in Section 3.3. The orientations are obtained for 16× 16 block sizes, and

are in the range [−90◦,+90◦).

Fig. 3.1(a), Fig. 3.1(b) shows the OF reconstructed from the minutiae set of latent and ten-

print respectively. The expected outcome of the registration algorithm is to locate the minutiae

region shown in Fig. 3.1(c).

Step 2: Generate the orientation tensors L̄ and T̄ for the latent L and tenprint T respectively

in double angles (i.e, in the range [−180,+180] degrees) using complex numbers, as follows:

L̄ = exp(i× 2× θL)

T̄ = exp(i× 2× θT )
(3.9)

where i is the complex number
√
−1, θL and θT are the angles of L and T from Step 1. L̄ is the

smallest rectangular region that covers the latent minutiae.

For each subregion T̄s of T̄ that is of the same size as L̄ located at a position indexed by s,

we can find the inner product between L̄ and T̄s as follows:

〈L̄, T̄s〉 =
∑
r,c

L̄(r, c)∗ · T̄s(r, c) (3.10)

where r, c are the indices, L̄(r, c)∗ is the complex conjugate of L̄(r, c).

Step 3: Define the bounding box for the latent orientation tensors L̄ by discarding the back-

ground. The bounding box can be estimated by the minimum and maximum row and column

numbers that correspond to the foreground of latent orientation tensors.
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Figure 3.1: Various stages in the registration algorithm shown on G028L1 (latent) and G028T1 (ten-

print) of NIST-SD27. (a) and (b) are the orientation field (OF) reconstructed from the ideal minutiae

set, with the minutiae plotted over the OF. (c) is the region in the tenprint that is to be found after reg-

istration of (a) into (b). (d), (e) and (f) are the correlation peaks when the latent is rotated at −35◦, 1◦

and +35◦ respectively and correlated with tenprint. (g) is the region where the latent pattern is identified

in the tenprint based on the proposed score fusion for rotation alignment of +1 degree. (h) is the minutiae

region selected by our pre-alignment algorithm.
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Step 4: When searching for the pattern L̄ in T̄ , it is possible that L̄ is not perfectly aligned

with T̄ , rotation wise. To compensate for the rotation alignment, we need to test the latent

L̄ against tenprint T̄ for various rotations of L̄. In our experiments, we rotate L̄ in the range

[−45◦,+45◦] with a step size ∆θ of 1◦ to compensate for rotation alignment to generate L̄θ. A

geometric rotation of ∆θ implies a related rotation of the tensor field of 2∆θ.

Step 5: The correlation is obtained by generating 〈L̄θ, T̄s〉 for all locations s in T̄ . The

result of this operation is a complex image. We then observe the correlation peaks for all θ

(magnitude of the complex image).

Fig. 3.1(d), Fig. 3.1(e), Fig. 3.1(f) shows the magnitude of the correlation images of L̄−35
◦
,

L̄+1◦ and L̄+35◦ with T̄ respectively.

Step 6: For each θ from the correlated result, find the location of the peak sθ = (rθm, c
θ
m),

i.e, the location with maximum magnitude in the correlated image. The peak in the correlated

image is where L̄θ agrees the most in T̄ . S = {(rθm, cθm)} is the set containing the coordinates of

the correlation peaks for all θ.

Step 7: For all orientations θ, calculate SS(L̄θ, T̄ms ), where T̄ms is the subregion in T̄ whose

center is sθ = (rθm, c
θ
m). SS is the normalized correlation measure as defined in Eq. (3.4).

The correlation and normalized correlation are essentially equivalent in the scenario where

θL and θT are not estimated from gray pixel gradients but reconstructed from minutiae orien-

tations. Consequently, the orientation tensors ei2θL and ei2θT are complex numbers falling on a

unit circle. So, the magnitude of the orientation tensors thus obtained are always 1.

3.2.2. Level 2: Fusion of similarity scores

Step 8: For each sθ = (rθm, c
θ
m) ∈ S, calculate MS(L̄θ, T̄ms ), ES(L̄θ, T̄ms ) and CS(L̄θ, T̄ms )

as defined in Eq. (3.5), Eq. (3.6) and Eq. (3.8) respectively.

Step 9: SS,MS,ES and CS are all similarity scores in the range [0, 1], where 0 denotes

minimum similarity and 1 denotes maximum similarity.

We perform score fusion of SS,MS,ES and CS based on the mean rule, and look for the

sθ = (rθm, c
θ
m) ∈ S for which the fused similarity score is maximum.
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Step 10: The resulting (rθm, c
θ
m) is the location in the tenprint where the latent rotated at

θ is registered with best alignment (see Fig. 3.1(g)). The center of the latent L is registered to

(rθm, c
θ
m) in tenprint T , and with a radius half the diagonal length of the bounding box of the

latent orientation field, a subset of minutiae which falls inside this circular region is chosen (see

Fig. 3.1(h)).

3.3. Types of Orientation Field estimation techniques

The orientation field describes the coarse structure, or basic shape of a fingerprint. It is

defined as the local orientation of the ridge-valley structure. Orientation fields (or directional

fields) falls under the Level-One detail of fingerprint feature categories. A fingerprint image

gradually faded into corresponding orientation image is shown in Figure 3.2.

Figure 3.2: Orientation field of a fingerprint image shown partly [Maltoni et al., 2009].

In Figure 3.2, the orientation field is computed over a square-meshed grid of size 16 × 16.

Each element θij corresponds to the node [i, j] of square-meshed grid located over the pixel

[xi, yi] denotes the average orientation of the fingerprint ridges in a neighborhood of [xi, yi]. The

value rij denotes the reliability or consistency of the orientation θij . A low value for rij denotes

noisy regions and high value for good quality regions in the fingerprint image.

In this study, we have used five different techniques for computing the orientation field of

the fingerprints, and are briefly explained in the following subsections. Various OF estimation

techniques are summarized in Table 3.1.
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OF Type Core Technique

MANUAL OF
Manually marked orientation field from the latent fingerprint

image [Feng et al., 2013]

DICT OF
Orientation field estimated directly from fingerprint image using

local Fourier analysis [Jain and Feng, 2009], and then performing

context based correction of the OF using dictionary lookup of

orientation patches [Feng et al., 2013].

MINU OF
Orientation field reconstructed from the minutiae [Feng and

Jain, 2011]. The work by Feng and Jain [Feng and Jain, 2011]

in reconstructing the fingerprint image from minutia sets alone,

and successfully launching attacks against fingerprint recogni-

tion system indicates that the fidelity of the reconstructed OF

to the actual OF is significant.

IMG OF
Orientation field estimated directly from the fingerprint image

using gradient based approach [Alonso-Fernandez et al., 2007].

The gradients are estimated using a gaussian derivative filter.

The orientation image thus obtained is a dense OF. The OF is

down-scaled using gaussian pyramid approach.

AV G OF
Orientation field estimated by taking the average of both of

IMG OF and MINU OF .

Table 3.1: Summary of orientation field estimation techniques used in this work.

3.3.1. Manually extracted

MANUAL OF : The OF for the latent fingerprints were manually extracted by the authors

of [Feng et al., 2013] for NIST-SD27, and is made publicly available. It is a common practice

in friction ridge examinations to perform manual tasks for generating relevant discriminatory

features useful for individualization.

3.3.2. Dictionary based

DICT OF : The dictionary-based orientation field estimation consists of an offline dictionary

construction stage and an online orientation field estimation stage [Feng et al., 2013]. This

procedure is summarized in Figure 3.3.

In the offline stage, orientation fields of good quality fingerprints consisting of various

patterns (arch, loop and whorl) are used to construct a dictionary of orientation patches.

The online stage is one in which the orientation field is calculated automatically for the

given fingerprint and involves following steps:
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Figure 3.3: Dictionary based orientation field estimation [Feng et al., 2013].

1. Initial estimation: Orientation field estimated directly from fingerprint image using

local Fourier analysis [Jain and Feng, 2009]. The dominant orientation in a 16 × 16

block is computed by detecting the peak in the magnitude spectrum of the local im-

age. Due to the poor quality of fingerprint in some regions, it is possible that OF thus

estimated is noisy. But, these noises are not removed out by any kind of OF smooth-

ing techniques such as Gaussian smoothing or average smoothing. The smoothing is

avoided because a correct orientation patch maybe degraded due to noisy neighboring

patches.

2. Dictionary lookup: The OF thus obtained is divided into overlapping patches. For

a given orientation patch belonging to foreground, a list of orientation patches from

the dictionary are retrieved which are sorted according to similarity with the patches

from foreground.

3. Context-based correction: Out of the list of candidate orientation patches retrieved

from the dictionary for an orientation patch of foreground, a single candidate patch

need to be chosen. To determine this single dictionary candidate, contextual infor-

mation is used. For each of the patch belonging to foreground, there corresponds a

list of candidate dictionary patches. Appropriate dictionary candidate are chosen to

correct the foreground patches such that an energy function is minimized.

The energy functions are designed based on the following two factors:

a) the similarity between the dictionary orientation patch and the foreground ori-

entation patch.

b) the compatibility between neighboring dictionary orientation patches.
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Figure 3.4: Minutiae based orientation field reconstruction [Feng and Jain, 2011]. The solid black boxes

are the nearest minutiae in each sector.

3.3.3. Reconstructed from minutiae

MINU OF : In this category, orientation field is reconstructed directly from the minutiae

alone [Feng and Jain, 2011]. Assume a blank image with the minutiae plotted on it. The fin-

gerprint image is divided into non-overlapping blocks of 8× 8 or 16× 16 pixels. The foreground

blocks are the ones with minutiae present in it. An orientation values is computed for each of

such foreground block. Consider a line passing through the non-overlapping blocks (as shown

in Figure 3.4 which divides the image into 8 equally spaced sectors. The local ridge orientation

at each block is then predicted by using the nearest minutiae in each of the 8 sectors. The

foreground region of interest is the region falling within the convex hull of minutiae.

Let M = {xi, yi, αi}, 1 ≤ i ≤ N be the fingerprint minutiae set consisting of N minutiae,

where (xi, yi) is the spatial location and αi the direction of the ith minutiae. The minutiae

direction αi is doubled to make αi equivalent to αi + π. For K minutiae selected from the eight

sectors, the cosine and sine components of 2αi are computed and summed as follows:

u =

K∑
i=1

cos(2αi)wi, (3.11)

v =

K∑
i=1

sin(2αi)wi, (3.12)

where wi is a weighting function. wi is taken as the reciprocal of the euclidean distance

between the block center and the ith minutiae. This makes the minutiae direction dominate the

ridge orientation of neighboring blocks.

The orientation at block (m,n) is computed as:

O(m,n) =
1

2
arctan

(u
v

)
(3.13)
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A reconstructed orientation field minutiae is depicted in Figure 3.4. The work by Feng and

Jain [Feng and Jain, 2011] in reconstructing the fingerprint image from minutia sets alone, and

successfully launching attacks against fingerprint recognition system indicates that the fidelity

of the reconstructed OF to the actual OF is significant. Also, the performance of the algorithm

in reconstructing the OF did not drop much even when only 60% of minutiae are only available

for OF reconstruction.

3.3.4. Estimated directly from fingerprint image

IMG OF : Orientation field estimated directly from the fingerprint image using gradient

based approach [Alonso-Fernandez et al., 2007] [Maltoni et al., 2009] [Bazen and Gerez, 2002].

This is the most natural approach for extracting local orientations of the fingerprint image.

The elementary orientations in the image are given by gradient ∇I(x, y) which is a two-

dimensional vector [Gx, Gy] defined as:

∇I(x, y) = [Gx, Gy] =

[
∂I(x, y)

∂x
,
∂I(x, y)

∂y

]
(3.14)

where I represent the gray scale fingerprint image, Gx and Gy are the derivatives of I at [x, y]

with respect to the x and y direction respectively. The gradient phase angle denotes the direc-

tion of the maximum change in pixel intensity. In principle, orientation field is perpendicular to

the gradient.

We used gaussian derivative kernel to estimate the components of the gradients. For a

gaussian hσ(x, y), the gaussian derivative along x-direction is given by

∂hσ(x, y)

∂x
(3.15)

and the gaussian derivative along y-direction is given by

∂hσ(x, y)

∂y
(3.16)

where

hσ(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (3.17)

The variances and cross-covariances of gradients Gx and Gy are smoothed using a gaussian

kernel around a windows size W as follows:

Gxx =
∑
W

G2
x (3.18)

Gyy =
∑
W

G2
y (3.19)
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(a) Fingerprint image (b) Intensity image

(c) Gradient based OF (d) Convex Hull based region of interest

Figure 3.5: Gradient based orientation field estimated directly from fingerprint image. (a) is the gray

scale fingerprint image. (b) and (c) shows the magnitude and angle of the orientation images obtained.

(d) is the region of interest estimated from the convex hull of minutiae.
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Gxy =
∑
W

GxGy (3.20)

where Gxx and Gyy are the variances, and Gxy the cross-covariances of Gx and Gy respectively.

The gradient direction within a window W centered at [xi, yj ] is given by:

Φij =
1

2
atan2 (2Gxy, Gxx −Gyy) (3.21)

and the orientation of the fingerprint ridge θij is given by

θij =
π

2
+ Φij (3.22)

as fingerprint orientation is taken as the perpendicular to the gradient direction. atan2 is defined

and used as in the Matlab environment.

The orientation image thus obtained is a dense orientation image, i.e, orientation estimated

for each pixel of the fingerprint image. The orientation image is down-scaled using gaussian

pyramid approach to obtain orientations for 16× 16 blocks as shown in Figure 3.5.

3.3.5. Averaged orientation field

AV G OF : Orientation field estimated by taking the average of both of IMG OF and

MINU OF .

AV G OF is estimated using the technique proposed in [Kass and Witkin, 1987], also detailed

in [Maltoni et al., 2009, Chapter 3] to average local gradients.

Let θik and θmk be the orientation corresponding to kth block of IMG OF and MINU OF

respectively. We double the angles to encode them by vectors:

d̄ik = [cos(2θik), sin(2θik)] (3.23)

d̄mk = [cos(2θmk ), sin(2θmk )] (3.24)

where d̄ik and d̄mk are the vectors corresponding to θik and θmk .

We then find the average vector d̄ak = [avgCosak, avgSinak] where

avgCosak =
1

2
(cos(2θik) + cos(2θmk )) (3.25)

avgSinak =
1

2
(sin(2θik) + sin(2θmk )) (3.26)
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From this average vector d̄ak, find the corresponding orientation of the kth block of AV G OF

as

θak =
1

2
atan2(avgSinak, avgCosak) (3.27)

The double angle representation avoids any errors due to circularity of angles while averag-

ing. Here, we assume θik , θmk and θak are in radians.

Out of these five different techniques, MANUAL OF and DICT OF were used for latent

fingerprints, whereas DICT OF , IMG OF , MINU OF and AV G OF were used for tenprints.

All the OF estimated were of 16 × 16 block size. The region of interest for the fingerprint is

considered to be the region inside the convex hull of the corresponding ideal minutiae of the

fingerprint present in NIST-SD27.

3.4. Experiments

We perform experiments on Good, Bad and Ugly quality classifications of NIST-SD27 to re-

port the accuracy of the proposed registration algorithm. 88 latents of Good category, 85 latents

of Bad category and 85 latents of Ugly category were searched in the entire set of 258 tenprints in

the NIST-SD27 database. We report the rank identification accuracy for two publicly available

minutiae based matchers, namely NIST-Bozorth3 [NIST-NBIS, NBIS-Release v4.2.0] and Minu-

tia Cylinder-Code (MCC) SDK [MCC, MCC-SDK v1.4] [Cappelli et al., 2010] [Cappelli et al.,

2011] [Ferrara et al., 2012] before and after incorporating our proposed hierarchical registration

algorithm as a pre-registration before the identification.

When reporting the rank identification accuracies, for Good quality, there are 88 match

scores and 88×257 non-match scores, for Bad and Ugly qualities, there are 85 match scores and

85 × 257 non-match scores respectively. When we report the rank identification accuracy for

the entire NIST-SD27 database (All category), then there are 258 match scores and 258 × 257

non-match scores.

NIST-Bozorth3 is a minutiae based fingerprint matcher that is specially developed to deal

with latent fingerprints. This matcher is part of the NIST Biometric Image Software (NBIS) [NIST-

NBIS, NBIS-Release v4.2.0], developed by NIST. MCC-SDK is a well known minutiae matcher

more adapted to good quality fingerprints with reasonable number of minutiae in both query

and reference templates. Both NIST-Bozorth3 and MCC-SDK are publicly available. We show

the performance accuracy of the matcher using Cumulative Match Characteristic (CMC) curves.
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Figure 3.6: CMC curve showing the rank identification rate of NIST-Bozorth3 for NIST-SD27 when

different types of OF estimation techniques were used for the tenprints, and MANUAL OF for latents,

when applying the proposed OF-based pre-alignment.

3.4.1. Experiment 1: Choosing the best orientation field for tenprints

Fig. 3.6 shows the CMC curve of the NIST-Bozorth3 matcher when using MANUAL OF

for latent against various other OF estimation techniques for tenprints while performing pre-

registration using our proposed hierarchical method. We can observe that the rank identification

accuracy has a consistent improvement when AV G OF is used for tenprints. The improve-

ment while using AV G OF is mainly because the image noise introduced in the estimation of

IMG OF is reduced while averaging with MINU OF .

Based on this result, we have chosen AV G OF as the orientation field for tenprints in re-

maining experiments reported here.

3.4.2. Experiment 2: Pre-Registration

In this experiment, we perform pre-registration using our registration algorithm to reduce

the minutiae search space of the tenprint minutiae set, and then use the reduced minutiae set

template as the reference template for the matcher. We used NIST-Bozorth3 and MCC-SDK as

the minutiae-based matchers.

For latents, MANUAL OF and DICT OF were used, and for the tenprints, we used

AV G OF to report the rank identification accuracies in this experiment. We also analyze
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Figure 3.7: Performance of NIST-Bozorth3 when using MANUAL OF for latents
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Figure 3.8: Performance of NIST-Bozorth3 when using DICT OF for latents
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Quality Bozorth3 Bozorth3 Bozorth3

DIRECT(%) L1(%) L2(%)

All 68.60 77.52 78.29

Good 77.27 85.23 86.36

Bad 60.00 70.59 72.94

Ugly 68.24 76.47 75.29

Table 3.2: Rank-1 identification for NIST-Bozorth3 with correlation based pre-registration and hierar-

chical registration when MANUAL OF is used for latents.

Quality Bozorth3 Bozorth3 Bozorth3

DIRECT(%) L1(%) L2(%)

All 68.60 74.42 75.19

Good 77.27 84.09 85.23

Bad 60.00 68.24 68.24

Ugly 68.24 70.59 71.76

Table 3.3: Rank-1 identification for NIST-Bozorth3 with correlation based pre-registration and hierar-

chical registration when DICT OF is used for latents.

separately the performance of the matcher using correlation only based registration and using

hierarchical registration.

3.4.2.1. NIST-Bozorth3

Fig. 3.7 and Fig. 3.8 show the CMC curve of NIST-Bozorth3 for two different registration

levels when MANUAL OF and DICT OF is used for latents respectively.

Fig. 3.7(a) shows the rank identification accuracy of NIST-Bozorth3 when correlation based

registration (Level 1) of our algorithm is used as pre-registration, and also without using pre-

registration (MANUAL OF for latents). We see a significant and consistent improvement in

the rank identification accuracy for all the quality categories when incorporating the proposed

pre-registration.

Fig. 3.7(b) shows the rank identification accuracy of NIST-Bozorth3 when hierarchical reg-

istration (Level 2) of our algorithm is used as pre-registration with MANUAL OF for latents.

Here, we notice a consistent improvement in the CMC curve for all subjective quality categories

compared to the correlation based registration. Especially there is a significant improvement for

both Bad and Ugly quality categories.

Table 3.2 summarizes the Rank-1 identification accuracy of NIST-Bozorth3 for both corre-
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lation based registration and hierarchical registration when MANUAL OF is used for latents.

The column DIRECT represents the Rank-1 identification accuracy of NIST-Bozorth3 when no

pre-registration is applied to the minutiae set. Column L1 and L2 represent the Rank-1 identi-

fication accuracy for correlation based registration (Level 1) and hierarchical based registration

(Level 2) respectively.

Similarly, Fig. 3.8(a) and Fig. 3.8(b) shows the rank identification accuracy of NIST-Bozorth3

when correlation based pre-registration and hierarchical pre-registration were applied using

DICT OF for the latents. Table 3.3 summarizes the Rank-1 identification accuracy in this

case. Similar results compared to using MANUAL OF for the latents are also obtained here

when considering DICT OF . This proves the robustness of the DICT OF method for obtain-

ing a reliable OF even with very difficult latents and the feasibility of our method as a fully

automatic tool.

3.4.2.2. MCC-SDK

Fig. 3.9 shows the CMC curve of MCC-SDK for the two registration levels considered when

MANUAL OF is used for latents. Fig. 3.9(a) and Fig. 3.9(b) show the rank identification

accuracy of MCC-SDK when correlation based pre-registration and hierarchical pre-registration

were applied respectively. Table 3.4 summarizes the Rank-1 identification accuracy in this case.

The overall Rank-1 accuracy improved from 78.3% to 79.4% when incorporating Level 1 pre-

registration, and to 79.4% when hierarchical based pre-registration (Level 2) is incorporated.

Even though the improvement is small, it is consistent and increases for Bad and Ugly quality

categories when we look beyond Rank-1.

Quality MCC-SDK MCC-SDK MCC-SDK

DIRECT(%) with L1(%) L2(%)

All 78.29 79.46 79.46

Good 96.59 93.18 97.73

Bad 72.94 76.47 75.29

Ugly 64.71 68.24 64.71

Table 3.4: Rank-1 identification for MCC-SDK with correlation based pre-registration and hierarchical

registration when MANUAL OF is used for latents.

3.4.3. Experiment 3: Parameters - Rotation step size, Radius

In this experiment, we study the quantization step size for rotation alignment (Step 4 in

Algorithm) as well as the best radius of the circular region (Step 10 in Algorithm) to generate

the subset of minutiae from the tenprint minutiae set. We used MANUAL OF for the latents,
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Figure 3.9: Performance of MCC-SDK when using MANUAL OF for latents
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AV G OF for tenprints and performed hierarchical registration on NIST-Bozorth3 matcher.

From Fig. 3.10(a) we can observe that when we use a step size (X-axis) for the rotation

equal to 1◦, we obtain the best performance in terms of rank identification accuracy (Y-axis).

We looked at the Rank-5 identified accuracy of the NIST-SD27 database (All category) to eval-

uate the performance, and looked at the step size varying from 1◦ to 25◦. Also interestingly,

the performance is not very much degraded with large steps, which can justify the use of large

steps in some scenarios when computation speed is prioritized.

With 1◦ as the step size, we studied the effect of the radius of the circular region. We

observe that the optimal radius is obtained by using a scale factor of 0.7 on half the length of

the diagonal of bounding box. Fig. 3.10(b) shows the Rank-5 accuracy for various scales of the

radius ranging from 0.6 to 1.4 scale factor in X-axis and the corresponding Rank-5 accuracy in

Y-axis.

3.4.4. Experiment 4: Best result obtained

With the optimal parameters estimated from our experiments, we have obtained the best

performance boost for the matchers when using the hierarchical registration as a pre-registration.

Fig. 3.11(a) and Fig. 3.11(b) shows the CMC curve for both NIST-Bozorth3 and MCC-SDK

with the optimal parameters for the hierarchical pre-registration. MANUAL OF was used for

latents and AV G OF was used for tenprints. Table 3.5 summarizes the Rank-1 identification

accuracy of NIST-Bozorth3 and MCC-SDK for the optimal parameters (rotation step size with

1◦ and radius scale factor of 0.7).

Quality NIST-Bozorth3 NIST-Bozorth3 MCC-SDK MCC-SDK

DIRECT(%) with L2(%) DIRECT(%) with L2(%)

All 68.60 78.29 78.29 80.62

Good 77.27 85.23 96.59 95.45

Bad 60.00 75.29 72.84 80.00

Ugly 68.24 74.12 64.71 65.88

Table 3.5: Rank-1 identification for NIST-Bozorth3 and MCC-SDK with optimal parameters.

Using our registration algorithm as a pre-registration, we were able to boost the overall

Rank-1 identification accuracy from 68.60% to 78.29% for NIST-Bozorth3, and from 78.29% to

80.62% for MCC-SDK. In other regions of the CMC curve the improvement is even higher.
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Figure 3.11: CMC curve of NIST-Bozorth3 and MCC-SDK with the optimal parameters.
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3.4.5. Experiment 5: Runtime analysis

We have implemented the proposed hierarchical registration algorithm in MATLAB which

is not an optimized version to be directly compared with that of a corresponding C/C++ imple-

mentation. Nevertheless, we summarize the average runtime of the MATLAB version for each

subjective quality category in Table 3.6.

Quality Average runtime

in milliseconds (ms)

Good 921

Bad 792

Ugly 707

Table 3.6: Average runtime for each subjective quality category.

We assume that the minutiae extraction and computation of AV G OF are pre-computed

offline, and they need to be generated only once for the reference fingerprints in the database.

In our MATLAB implementation, we used filter2() function to obtain the correlations men-

tioned in Step 5 of Algorithm. If the size of the region of interest for the input latent is large,

then it will be advantageous to perform the correlation in frequency domain using Fast Fourier

Transform (FFT) implementations where correlation reduces to multiplication, and then obtain

the inverse FFT to get the equivalent of correlation in spatial domain.

3.5. Discussions

We have proposed an orientation field based registration algorithm for partial fingerprints.

When we use our hierarchical registration algorithm as a pre-registration stage and reduce the

search space of minutiae in the tenprint minutiae set, we were able to significantly boost the

performance of two popular minutiae matchers using challenging and realistic data. The main

objective of our research was to improve the rank identification accuracy for poor quality latents.

We were able to obtain consistent and significant improvement for both Bad and Ugly quality

category of latents from NIST-SD27.

Upon studying various orientation field estimation techniques for fingerprints to be used in

our registration, we have noticed that the best representative orientation field for tenprints was

obtained by averaging a gradient based orientation field estimated from the fingerprint image

and the orientation field reconstructed from the minutiae set. This gave the best performance

mainly due to noise reduction while averaging. For latents, we studied two types of orientation

fields corresponding to two different scenarios: with manual intervention and fully automated
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procedure. We obtained the best performance while using manually extracted orientation field

for latents, and also a significant improvement with automated dictionary-based orientation field

estimation.

We have observed that if the region of interest is very small in the latent fingerprint, es-

pecially in Bad and Ugly quality category, the registration accuracy is slightly degraded while

using the hierarchical method compared to correlation-based registration. This accounts for a

slight variation in the Rank-1 performances between L1 and L2. Since we are not using our own

minutiae matcher, but using standard ones, it will be difficult to give a theoretical justification

on the behavior for Rank-1 identification between L1 and L2, especially for Bad and Ugly cat-

egories. Anyway on an average, we observe that the hierarchical method significantly improves

the rank identification accuracy.

We also observed that for a large quantization step in the rotation alignment, we have not

degraded the performance very much, and while matching, we have reduced the size of the

minutiae search space in the tenprint to good extent which accounts for overall efficiency of our

proposed method. Also, we have established the feasibility of our method as a fully automatic

tool.
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Chapter 4

Related works and motivation for

incorporating EFS

This chapter discusses about the importance of Extended Feature Set (EFS) towards im-

proving the identification accuracies of automated minutiae-based fingerprint matchers, and a

brief overview of our proposed method to use EFS in improving the minutiae-based matchers

that are not already adapted to use EFS. We review the limitations of currently available latent-

AFIS in Lights-Out mode which do not use all the discriminatory features that can be obtained

from fingerprint. Current practices in using latent-AFIS involves human intervention in terms

of marking the features manually for the latent fingerprints. This procedure of manual marking

of latent fingerprint features and then using the latent-AFIS for identification is termed as Semi

Lights-Out mode. We give a brief overview on the results of the public evaluation of commercial

latent-AFIS conducted by NIST in both Lights-Out mode (ELFT) and in Semi Lights-Out mode

(ELFT-EFS), and the conclusions derived from these evaluations.

We discuss the major problems cited by the forensic community in the friction ridge analysis

procedures currently followed. The steps taken by the Scientific Working Group on Friction

Ridge Analysis, Study, and Technology (SWGFAST) towards resolving some of the issues noted

by the forensic community, and the setting up of a Committee to Define an Extended Fingerprint

Feature Set (CDEFFS) by ANSI/NIST are briefly discussed. We then briefly discuss some of

the extended features defined by CDEFFS under various fingerprint feature category levels, and

the type of extended features that are used in our study. The database used in our experiments

to establish the usefulness of our proposed algorithm based on extended features is obtained

from Guardia Civil, the Spanish law enforcement agency. We describe in detail the Guardia

Civil database (GCDB), the rare minutiae found in GCDB and their statistics in Chapter 5.

A review on related works which makes use of EFS to improve the identification accuracies

of automated matchers and the conclusions derived are briefly explained here in Chapter 4.

The detailed description of our proposed algorithm which incorporates extended features (rare

minutiae), and various experiments establishing the usefulness of our proposed algorithm are

provided in Chapter 5.
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4.1. Lights-Out system evaluation: NIST-ELFT

A common forensic evidence used in criminal investigations is latent fingerprint, but com-

paring latent fingerprints is not an easy task. This is mainly attributed to the poor quality of

the latent fingerprints obtained from the crime scenes. When a latent fingerprint is found, the

criminal investigators first search for the suspect using an Automated Fingerprint Identification

System (AFIS) to narrow down their manual work. If there is a match, then the individual

is linked to the crime under investigation. Individualization (identification or match) is the

decision yielded by a forensic examiner about the latent fingerprint belonging to a particular

individual. This is the outcome of the Analysis, Comparison, Evaluation and Verification (ACE-

V) [Ashbaugh, 1999] methodology currently followed in friction ridge examination.

In order to improve the matching efficiency, the concept of “Lights-Out System” was in-

troduced for latent matching [Dvornychenko and Garrism. M, 2006]. A Lights-Out System is

a fully automatic identification process with no human intervention. Here, the system should

automatically extract the features from the latent fingerprint and match it against the tenprints

(exemplars) stored in the AFIS database to obtain a set of possible suspects with high degree

of confidence. In general, latent fingerprints are partial in nature and are of varying quality

(see Figure 4.1), mostly distorted, smudgy, blurred etc. These factors lead to high number of

unreliable extracted features in fully automatic mode, and make it difficult for AFIS to perform

well.

AFIS do not use all the discriminatory features that could be derived from a fingerprint,

mainly due to the limitations of automatic and reliable extraction of all types of discriminatory

features. The accurate performance of feature extraction and matching algorithms of AFIS in

forensic scenario is of great importance to avoid erroneous individualization. NIST conducted

a multi-phase public evaluation of latent AFIS called as Evaluation of Latent Fingerprint Tech-

nologies (ELFT) [NIST-ELFT, 2013]. A discussion about the conclusions derived from these

public evaluations are briefed in Section 1.10.2, and the best results achieved for various phases

are summarized in Table 1.1.

4.2. Standardizing extended fingerprint features

AFIS use only a limited number of features automatically extracted from the fingerprints

using a feature extraction algorithm. On the other hand, forensic examiners use a richer set of

features during their manual comparisons. This could be a possible reason why manual compar-

isons outperform AFIS comparisons [Jain, 2010]. Any features that are not currently used by

commercial AFIS are generally termed as Extended Feature Set (EFS) [Zhao and Jain, 2010].

The use of EFS by forensic examiners in manual comparisons is much debated, mainly due to

non-repeatability by another examiner to validate the previous decision.
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(a) Good

(b) Bad (c) Ugly

Figure 4.1: Subjective quality classification of latent fingerprint images in NIST Special Database 27

(NIST-SD27).
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Type of category Extended Feature Set

Level-One Details
Ridge flow map, local ridge quality, pat-

tern classification (whorl, arch, tentarch,

left/right loop etc), singular points (core,

delta), core-delta ridge count.

Level-Two Details
Minutiae-ridge relationship, ridge curva-

ture, feature relationship, unusual/rare

minutiae, scars, creases, incipient ridges,

dots.

Level-Three Details Pores, edge shapes, ridge/furrow width.

Table 4.1: Extended features defined by CDEFFS categorized into respective fingerprint feature details

(not a comprehensive list).

Two major problems in friction ridge analysis as reported in [Hicklin, 2007] are as follows:

1. Latent AFIS searches are limited by an over simplified feature set.

2. During the latent examiner comparison, there are no standard format to document the

features used in comparison decision. This leads to problems with future reference or in-

terchange with other forensic examiners.

The SWGFAST (Scientific Working Group on Friction Ridge Analysis, Study, and Technol-

ogy) drafted a memo to NIST noting that forensic examiners use features that are not currently

addressed in fingerprint standards. The ANSI/NIST Standard Workshop II charted the Commit-

tee to Define an Extended Fingerprint Feature Set (CDEFFS). The CDEFFS included 45 mem-

bers from various federal agencies, the forensic community, AFIS vendors, and academia [Hicklin,

2007]. The purpose of CDEFFS was to define a standard to completely represent the distinctive

information in the fingerprint which are quantifiable, repeatable and develop a clear method of

characterizing information for: 1) AFIS searches initiated by forensic examiner, and 2) forensic

examiner markup and exchange of latent fingerprints.

Fingerprint features are categorized into three levels as well as a feature category called

“other” to be used for friction ridge examination. Level-One considers general overall direction of

the ridge flow. Level-Two describes the path of specific ridges. Level-Three are the shapes of the

ridge structure. “Other” features describe temporary features or imperfections in ridges [Holder

et al., 2011]. Some of the extended fingerprint features defined by CDEFFS under each of

the three level categories [Hicklin, 2007] [Hicklin, 2005] are summarized in Table 4.1. Figure 4.2

show some general extended features and Figure 4.3 show some rare minutia features and typical
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 4.2: Some example Extended Feature sets [Hicklin, 2007]: (a) ridge flow maps, (b) local ridge

quality, (c) ridge path, (d) pattern classifications, (e) protrusions, (f) flexion creases, (g) center point of

reference.
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Figure 4.3: Typical minutiae (ridge-endings, bifurcations) and rare minutia features (assemble, ridge

crossing, enclosure) in an exemplar fingerprint from NIST-SD27 database.

minutiae features (ridge-endings and bifurcations) in an exemplar fingerprint from NIST Special

Database 27 (NIST-SD27).

4.3. Semi Lights-Out system evaluation: NIST-ELFT-EFS

To use EFS in automated systems, reliable feature extraction algorithms are mandatory.

Many law enforcement agencies follow a 500 ppi scanning resolution for fingerprint images to

be used in AFIS. With such a resolution, it is difficult to reliably extract many of the extended

features automatically. Due to advances in fingerprint scanning technologies, SWGFAST dur-

ing the ANSI/NIST Fingerprint Standard Update Workshop in 2005 proposed 1000 ppi as the

minimum scanning resolution for fingerprint images. This proposal was hugely supported by the

forensic community. To test the feasibility of including EFS in latent AFIS, NIST conducted

another multi-phase commercial latent algorithm evaluation called Evaluation of Latent Finger-

print Technologies - Extended Feature Sets (ELFT-EFS) [Indovina et al., 2011b].

ELFT-EFS was conducted in a “Semi Lights-Out” mode as compared to the “Lights-Out”

mode for ELFT. The main purpose of ELFT-EFS was to determine the effectiveness of forensic

examiner marked latent fingerprint features on the latent identification accuracy. NIST con-

ducted two evaluations for ELFT-EFS and the best achieved Rank-1 identification accuracy for

each of the evaluations is summarized in Table 4.2.
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ELFT-EFS Database size
Rank-1

accuracy

Evaluation-1

[Indovina et al., 2011b]

1,114 latents compared against

1,000,000 rolled prints and

1,000,000 plain prints

66.7%

Evaluation-2

[Indovina et al., 2012b]

[Indovina et al., 2012c]

1,066 latents compared against

1,000,000 rolled prints and

1,000,000 plain prints

71.4%

Table 4.2: Rank-1 identification accuracy of NIST Evaluation of Latent Fingerprint Technologies -

Extended Feature Sets (ELFT-EFS).

As in ELFT, the results of different evaluations in ELFT-EFS cannot be directly compared

because the database used were not exactly the same [Indovina et al., 2012b] [Indovina et al.,

2011b]. In [Indovina et al., 2012b], it is reported that though the highest measured accuracy

achieved by a individual matcher at Rank-1 was 71.4%, and approximately 82% of the latents

were correctly matched at Rank-1 when more matchers were combined. This corroborates the

potential for additional accuracy improvement when combining multiple algorithms [Fierrez-

Aguilar et al., 2006].

4.4. Overview and main contributions

In this work, we propose a method to improve the identification accuracy of minutiae-based

matchers for partial latent fingerprints by incorporating reliably extracted rare minutiae fea-

tures. Most minutiae-based fingerprint matchers use only two prominent ridge characteristics

namely ridge-endings and bifurcations. We propose an algorithm that will modify the similarity

scores of minutiae-based matchers based on the presence of rare minutia features like fragments,

enclosures, dots, interruptions, etc. The weights that we use to modify the similarity scores are

obtained based on the probability of occurrence of such rare minutiae features. The decision

for a match or non-match is automatically estimated based on least squares fitting of an affine

transformation between the latent minutiae set and the tenprint minutiae set. We show a signif-

icant improvement in the overall rank identification accuracies for two minutiae-based matchers

(NIST-Bozorth3 and VeriFinger) when their similarity scores are modified using our proposed

algorithm which incorporates rare minutiae features.
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The main contributions of this work are as follows:

1. A methodology to adapt any minutiae-based matcher by incorporating information from

rare features.

2. A specific algorithm to align the latent minutiae pattern and the tenprint minutiae pattern

using rare minutiae.

3. Experimental demonstration of the performance improvement of minutiae-based matchers

when incorporating information from rare features.

4. We finally present also various population statistics about rare minutiae features present

in a realistic forensic casework database obtained from Spanish law enforcement agency

(Guardia Civil).

In the following sections, we review related works in the use of extended features of finger-

prints towards improving the rank identification of automated matchers. In next chapter, we

explain the proposed algorithm to modify the similarity scores of minutiae-based matchers based

on rare minutiae features, experiments, results and discussions.

4.5. Related works

An extensive study on extended fingerprint feature sets is reported by Jain [2010]. This in-

cludes several extended features from Level-One, Level-Two and Level-Three. It was concluded

in [Jain, 2010] that manual intervention is strongly recommended while using EFS, as well as

extended features from Level-One and Level-Two are highly recommended to be incorporated

in latent AFIS. Extended features such as ridge flow map, ridge wavelength map, ridge quality

map, and ridge skeleton have shown significant improvements in latent identification accuracies.

Level-One and Level-Two details used in [Jain, 2010] [Jain and Feng, 2011] are insensitive to

image quality, and do not rely on high resolution images. To incorporate Level-Three EFS such

as pores, dots, incipients, etc, it is essential to improve the quality of enrolled fingerprints.

The use of pores as extended features was studied in high resolution 1000 ppi images by Zhao

and Jain [2010] and Jain et al. [2007b]. Dots and incipients were studied by Chen and Jain

[2007]. Out of pores, dots and incipients, pores resulted in better performance [Zhao and Jain,

2010]. Even though high resolution 1000 ppi images were used, live scan images resulted in

easy detection of pores automatically, which was not the case with inked fingerprint images.

Pore extraction based on skeletonized and binary images was studied by Stosz and Alyea [1994]

and Kryszczuk et al. [2004]. These techniques were demonstrated effective only on very good

quality high resolution fingerprint images scanned approximately at 2000 ppi [Stosz and Alyea,

1994]. These methods were more sensitive to noise, and the performance degrades for poor

quality of fingerprint images and low resolution images.
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A local image quality based method applied on extended fingerprint features for high reso-

lution 1000 ppi fingerprint images was reported by Vatsa et al. [2008]. A fast curve evolution

algorithm was used to quickly extract extended features such as pores, ridge contours, dots and

incipient ridges. Together with other Level-One and Level-Two details as proposed in Jain and

Feng [2011], these extended features were used to generate a quality-based likelihood ratio to

improve the identification performance.

Score level fusion of different algorithms using various extended fingerprint features was

report by Fierrez et al. [2005]. Features like singular points, ridge skeleton, ridge counts, ridge

flow map, ridge wavelength map, texture measures were studied by analyzing the correlation

between them using feature subset-selection techniques. Combination of features show significant

improvement in the performance of the system.
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Chapter 5

Integrating EFS in generic

fingerprint matchers: Database,

algorithm and experiments

This chapter describes in detail the database acquired and processed (GCDB) within the

present PhD research, and the proposed algorithm to improve the identification accuracy of

minutiae-based matchers for partial latent fingerprints by incorporating reliably extracted rare

minutiae features. The improvement in the identification accuracy for matchers are achieved by

modifying the similarity scores of matcher based on the decision yielded by our algorithm. The

decision for a match or non-match is automatically estimated based on least squares fitting error

of an affine transformation that transforms latent minutiae set onto tenprint minutiae set with

the rare minutiae as the reference point. The proposed method is accomplished through two

stages. In the first stage, we estimate the fitting error, and in the second stage, the similarity

score of the matcher is modified. We show a significant improvement in the rank identification

accuracies of two minutiae-based matchers namely, NIST-Bozorth3 and VeriFinger-SDK. The

chapter concludes with a discussion summarizing the usefulness of our proposed algorithm.

5.1. Database : Guardia Civil database

The database used in this work was obtained from Guardia Civil, the Spanish law enforce-

ment agency. The Guardia Civil database (GCDB) is a realistic forensic fingerprint casework

database acquired and processed within the present PhD research. Apart from having typical

minutiae feature types (ridge-endings, bifurcations), GCDB also comprises rare minutiae types

like fragments, enclosures, dots, interruptions, etc [Santamaria, 1955]. A comprehensive list of

rare minutiae features used by Guardia Civil are shown in Figure 5.1 and the corresponding

minutiae type names are listed in Table 5.1.
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Figure 5.1: Minutiae types used by Guardia Civil. Names corresponding to individual minutiae type

numbers can be found in Table 5.1.

No Minutiae type No Minutiae type No Minutiae type

1 Ridge Ending 6 Interruption 11 Circle

2 Bifurcation 7 Enclosure 12 Delta

3 Deviation 8 Point 13 Assemble

4 Bridge 9 Ridge Crossing 14 M-structure

5 Fragment 10 Transversal 15 Return

Table 5.1: List of minutiae types used by Guardia Civil. Numbering with respect to Figure 5.1.

GCDB used in this work consists of 268 latent and tenprint (exemplar) pairs of fingerprint

images and minutiae sets. All the minutiae in the latent fingerprint images were manually

extracted by forensic examiners of Guardia Civil. The corresponding mated minutiae in the

tenprints were also manually established. This includes the typical (ridge-endings and bifurca-

tions) minutiae and the rare minutiae. These are called matched minutiae set, i.e, the minutiae

sets for which a one-to-one correspondence is established between the latent and the mated

tenprint. Here, the number of minutiae in the latent and the corresponding mated tenprint

minutiae set are the same.

To generate an ideal minutiae set (i.e, all possible minutiae) for the tenprint, we used the

minutiae extractor module from VeriFinger SDK [Neurotec-Biometric-4.3]. We performed a Ga-

bor filtering based post-processing to remove any spurious minutiae that are outside the region

of interest (ROI). This post-process was needed because the quality of the tenprints in GCDB

were not good in most of the cases, and VeriFinger couldn’t perform a proper segmentation

of the fingerprint region of interest by itself. So, spurious minutiae were generated which lies

outside of ROI.
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The algorithm to estimate the ROI is outlined as follows:

1. The fingerprint image I (Figure 5.2(a)) is first normalized as proposed by Hong et al.

[1998]:

I ′[x, y] =

m0 +
√

(I [x, y]−m)2 · v0/v if I[x, y] > m

m0 −
√

(I [x, y]−m)2 · v0/v otherwise,
(5.1)

where m and v are the image mean and variance and m0 and v0 are desired mean and

variance after the normalization. The normalized image I ′ is shown in Figure 5.2(b).

In our implementation, we used m0 = 100 and v0 = 128 as the desired mean and variance

to obtain I ′.

2. Eight different Gabor filter responses for the normalized fingerprint image I ′ are generated

by varying the orientation parameter of Gabor filter. We used the even symmetric two-

dimensional Gabor filter defined as follows [Maltoni et al., 2009]:

g(x, y : θ, f) = exp

{
−1

2

[
x2θ
σ2x

+
y2θ
σ2y

]}
· cos(2πf · xθ) (5.2)

where θ is the orientation of the filter, and [xθ, yθ] are the coordinates of [x, y] after a

clockwise rotation of the Cartesian axes by an angle of (90◦ − θ).

[
xθ

yθ

]
=

[
cos(90◦ − θ) sin(90◦ − θ)
− sin(90◦ − θ) cos(90◦ − θ)

][
x

y

]
=

[
sin θ cos θ

− cos θ sin θ

][
x

y

]
(5.3)

There are four parameters for Gabor filter. θ, the orientation of filter, f , the frequency of

the filter, σx and σy are the standard deviations of the Gaussian envelope along the x and

y axes respectively. In our experiments we fixed the parameters f = 1/8, σx = σy = 4,

and discrete orientations θ = {0◦, 22.5◦, 45◦, 67.5◦, 90◦, 112.5◦, 135◦, 157.5◦}.

3. I ′i is the Gabor response of the image I ′ for the orientation θi. Figure 5.2(c)-(j) shows the

Gabor responses for θi. Generate the mean image I ′mean as follows:

I ′mean =
1

8

8∑
i=1

I ′i (5.4)

Figure 5.2(k) shows the mean image I ′mean of all the Gabor responses.
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Figure 5.2: The various stages involved in generating the region of interest using Gabor filter based

segmentation. (a) original fingerprint image, (b) histogram normalized, (c)-(j) Gabor responses for eight

different orientations (0◦, 22.5◦, 45◦, 67.5◦, 90◦, 112.5◦, 135◦, 157.5◦) respectively on normalized finger-

print image, (k) mean of all 8 different Gabor responses, (l) gradient based thresholding, (m) ROI mask

generated after performing erosion and dilation on (l), (n) the segmented fingerprint image.
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4. Generate the gradient along X-axis and Y -axis separately for the mean image I ′mean, and

threshold each gradient image to generate respective binary images. These thresholded

gradient binary images are combined using OR operation to generate a single binary image

as shown in Figure 5.2(l).

5. The combined binary image thus obtained to get ROI has lot of noisy pixels due threshold-

ing. To remove such noisy pixels, dilation and erosion operations are performed on these

images to obtain a clean ROI, which is essentially the binary mask which represents the

ROI as shown in Figure 5.2(m).

6. Based on the binary mask, we perform the segmentation of the given fingerprint image,

and ROI is obtained (Figure 5.2(n)).

Once the ROI has been estimated, we consider only those minutiae which lies inside ROI.

VeriFinger extracts only the typical minutiae features from the fingerprint image. We then

added the rare minutiae from the GCDB tenprint minutiae set into the post-processed VeriFin-

ger generated minutiae set for the tenprints. In this case the number of minutiae between the

latent and the corresponding mated tenprint minutiae set are not equal, the latent minutiae set

is only a subset of the tenprint minutiae set. The average number of minutiae in the latents was

13 and that of tenprints was 125.

The original latent minutiae sets provided by Guardia Civil and the post-processed VeriFin-

ger generated minutiae sets are used in all our experiments. To represent some rare minutiae,

multiple points were needed. For example, to represent a deviation two points are needed (see

type 3 in Figure 5.1), and to represent an assemble three points are needed (see type 13 in

Figure 5.1). Whenever multiple points are needed to represent a rare minutiae, we mapped

them to a single point representation by taking the average of locations and orientations of all

points.

From the 268 latent fingerprint minutiae sets, we estimated the probability of occurrence (pi)

of various minutiae types. The probability (pi) and the entropy-based weights (wi = − log10 pi)

for each minutiae type present in GCDB are listed in Table 5.2. In the 268 latent fingerprints

of GCDB, we noticed only seven types of rare minutiae features. They are listed in Table 5.2.

Other rare minutiae types are not found in the current database used in this study.
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No Minutiae Type Probability (pi) Weight

(wi = − log10 pi)

1 Ridge-ending 0.5634 0.2492

2 Bifurcation 0.3620 0.4413

3 Deviation 0.0015 2.8294

4 Bridge 0.0024 2.6253

5 Fragment 0.0444 1.3523

6 Interruption 0.0021 2.6833

7 Enclosure 0.0204 1.6896

8 Point 0.0036 2.4492

10 Transversal 0.0003 3.5284

Table 5.2: The probability of occurrence and the entropy based weights for the minutiae types present

in the 268 latent fingerprints of GCDB. The numbers correspond to minutiae types in Figure 5.1

5.2. Algorithm

The latent fingerprints of GCDB are highly partial in nature, with an average of 13 minutiae

per latent. To make an appropriate alignment between the latent minutia points and the ten-

print minutia points (with an average of 125 minutia points) requires a reliable reference point.

We choose the rare minutia features as reference points to perform the alignment.

Let L and M be the representation of latent and tenprint minutia sets respectively. Each

minutia is represented as a quadruple m = {x, y, θ, t} that indicates the (x, y) location as

coordinates, the minutia angle θ and the minutia type t:

L = [m1 m2 ... mp] , mi = [xi yi θi ti]
T , i = 1...p

M = [m′1 m
′
2 ... m

′
q], m′j = [x′j y

′
j θ
′
j t
′
j ]
T , j = 1...q,

where p and q are the number of minutiae in L and M respectively. If t > 2, then the minutia

is of rare type (from Table 5.1), and [ · ]T denotes transpose.

The algorithm to generate weighted similarity scores from a minutiae matcher is described in

two stages. Similarity scores of minutiae matchers are modified only if they contain rare minutia

features.

84



Chapter 5. Integrating EFS in matchers 5.2 Algorithm

La
te

nt
 F

in
ge

rp
rin

t

La
te

nt
Fi

ng
er

pr
in

t
Te

m
pl

at
e

(ty
pi

ca
l &

 ra
re

)

Manualmarkup

A
FI

S 
da

ta
ba

se
(G

C
D

B
)

M
in

ut
ia

e-
ba

se
d 

A
FI

S 
m

at
ch

er

Pr
op

os
ed

 
al

go
rit

hm
 

on
ly 

typ
ica

l m
inu

tia
 fe

atu
res

 ty
pic

al 
+ r

are
  m

inu
tia

 fe
atu

res

M
od

ifi
ed

 A
FI

S 
sc

or
e

S’
m

   
 E

xe
m

pl
ar

 te
m

pl
at

e
(o

nl
y 

ty
pi

ca
l f

ea
tu

re
s)

   
  E

xe
m

pl
ar

 te
m

pl
at

e
(ty

pi
ca

l +
 ra

re
 fe

at
ur

es
)

  E
 <

= 
th

re
sh

ol
d?

 

Si
m

ila
rit

y 
sc

or
e

S m

Fi
tti

ng
 E

rr
or

 (E
)

ye
sw

i

no

p i

F
ig
u
re

5
.3
:

S
eq

u
en

ce
o
f

st
ep

s
in

es
ti

m
a
ti

n
g

th
e

m
od

ifi
ed

si
m

il
a
ri

ty
sc

o
re

o
f

a
re

fe
re

n
ce

m
in

u
ti

a
e-

ba
se

d
m

a
tc

h
er

.

85



Chapter 5. Integrating EFS in matchers

The first stage of the algorithm estimates the least square fitting error for an affine trans-

formation of the latent minutiae set onto a tenprint minutiae set. The second stage of the

algorithm modifies the similarity score generated by the minutiae-based matcher based on the

fitting error. Other works related with modifying the similarity score based on pre-alignment

are reported in [Krish. et al., 2015; Paulino et al., 2013; Zheng and Yang, 2015]. The sequence

of steps involved in generating the modified score of the minutiae matcher using our proposed

algorithm is summarized in Figure 5.3.

Stage-1 : Least Square Fitting Error

Step 1: To find the affine transformation between L and M , it is first needed to establish

a one-to-one correspondence between minutiae from L and minutiae from M . Let the subset of

minutiae from M which establishes correspondence with L be denoted as Ms.

Step 2: Superimpose one rare minutia point of L onto the corresponding rare minutia point

of M , only if they both are of the same type (if there are multiple rare minutia points, take

any). If the type of the rare minutia between L and M differs, or M does not contain any rare

minutiae, then the comparison is assumed to be non-match.

Step 3: To establish the correspondence between latent and tenprint minutia points, we

choose the minutia points from M that are close to the minutia points of L. The Euclidean

distance is calculated between the minutia pairs to determine whether the pairs are close or not.

Step 4: To compensate for rotation alignment, we rotate the latent in the range [−45◦,+45◦]

with respect to the superimposed rare minutiae, and estimate the Euclidean distance for each

rotation step of size 1◦.

Step 5: The optimal rotation is the one for which the average sum of distances between

closest pairs is minimum.

Step 6: After the alignment, all those minutia pairs which are within a threshold distance

are considered to be mated pairs, and a one-to-one correspondence is established between them.

As a result, we obtain a subset Ms of the tenprint minutiae M . After establishing the corre-

spondence, the number of minutiae between L and Ms are the same.

Step 7: Once the correspondence is established, we find the least square fitting error for the

affine transformation between the latent minutia points and the subset of tenprint minutiae set.
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For L̂ and M̂s, which are the modified version of L and Ms with only the (x, y) locations as

minutia representation augmented with a value 1, i.e,:

L̂ = [m̂1 m̂2 ... m̂p]; m̂i = [xi yi 1]T ; i = 1...p

M̂s = [m̂′1 m̂
′
2 ... m̂

′
p]; m̂′j = [x′j y

′
j 1]T ; j = 1...p,

we are looking for some affine transformation matrix

A = [ajk]j,k=1...3 (5.5)

and some translation vector

τ = [τ1 τ2 ... τp]; τ1 = τ2 = ... = τp = [δx δy 1]T ; (5.6)

such that

M̂s ≈ AL̂+ τ (5.7)

where [δx δy] is the translation needed to superimpose the rare minutia of L and M .

Step 8: Find the least square fitting error between L̂ and M̂s defined as follows:

EL̂,M̂s =
1

p

p∑
i=1

||m̂′i −Am̂i − τi||22 (5.8)

where ||m̂′i −Am̂i − τi||2 is the L2 norm.

For a match comparison, we expect this fitting error to be small, whereas for a non-match

comparison, the fitting error is expected to be large.

If there are multiple matching rare minutiae feature between L and Ms, then EL̂,M̂s is

calculated for all such minutiae types. The fitting error for such a comparison is chosen to be

the minimum of all the fitting errors calculated.

Stage-2 : Weighted scores

Step 9: Using a standard minutia matcher, generate the similarity score Sm between L and

M . The modified similarity score S′m based on a fitting error threshold E is obtained as follows:

S′m =

Sm × wi if EL̂,M̂s ≤ E

Sm × pi if EL̂,M̂s > E
(5.9)

where wi is the derived entropy based weight, and pi is the probability of occurrence of a partic-

ular rare minutia type ti. The values for wi and pi for all minutiae type ti are listed in Table 5.2.
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If EL̂,M̂s ≤ E, then the comparison is deemed to be a match, and if EL̂,M̂s > E, the comparison

is deemed to be a non-match.

Thus, we obtain a modified similarity scores S′m for a particular minutiae matcher by reward-

ing or penalizing the similarity scores based on the fitting error obtained using our approach.

5.3. Experiments

We performed all our experiments on the minutia sets of 268 latents and corresponding

268 tenprints of GCDB. To generate similarity scores, we used two minutiae matchers namely:

NIST-Bozorth3 [NIST-NBIS, NBIS-Release v4.2.0] and VeriFinger SDK [Neurotec-Biometric-

4.3]. When reporting the rank identification accuracies in our experiments, there are 268 match

comparisons and 268× 267 non-match comparisons.

NIST-Bozorth3 is a minutiae based fingerprint matcher that is specially developed to deal

with latent fingerprints and is publicly available. This matcher is part of the NIST Biometric

Image Software (NBIS) [NIST-NBIS, NBIS-Release v4.2.0], developed by NIST. VeriFinger is a

commercial SDK that is widely used in academic research. We report the performance accuracy

and improvement of all the matchers using Cumulative Match Characteristic (CMC) curves.

5.3.1. Experiment 1: Fitting Error probability distribution

The least square fitting error probability density estimates for both match and non-match

comparisons are shown in Figure 5.4. We can observe that the fitting error itself is discriminatory

enough, having separate peaks for both match and non-match distributions. This supports the

methodology followed in our algorithm. The following experiments also support this fact.

5.3.2. Experiment 2: Importance of rare minutiae

Four configurations are compared in this experiment to demonstrate the importance of using

rare minutia features:

1. Typical Features: Only the typical minutia features (ridge-endings and bifurcations) were

used, i.e, the fingerprint templates contained only typical features and similarity scores

were generated only using the minutiae matchers.

2. Typical + Rare (all processed as Typical): Both the typical minutia features and rare minu-

tiae features were used, considering both as typical minutiae. The original representation

of the rare minutia features was maintained in this experiment, i.e, when multiple points

are used to represent the same rare minutia feature, they all were used as such without

taking any averaging of the minutiae as compared against averaging of rare minutia points
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Figure 5.4: Probability density estimate of the fitting errors for match and non-match comparisons.

to estimate the least square fitting error.

3. Weighted Scores - Manual : In this kind of analysis, the match and non-match compar-

isons were not automatically decided but manually partitioned. The similarity scores were

rewarded for match comparisons and penalized for non-match comparisons without any

error.

4. Weight Scores - Automatic: Here, the similarity scores generated by the minutiae matchers

are modified automatically, which is more appropriate in a real-time operational scenario.

Without knowing whether a particular comparison is a match or non-match comparison,

the similarity scores generated by the minutiae-based matcher are modified based on fit-

ting error alone. If the fitting error was less than or equal to E, then the comparison is

deemed to be a match comparison and their similarity score is rewarded as indicated in

Eq.(5.9). If the fitting error is more than E (a non-match comparison), then the similarity

score is penalized.

Figures 5.5(a) and 5.5(b) show the rank identification accuracy in CMC curve for both

NIST-Bozorth3 and VeriFinger separately for the four configurations listed above. Typical +

Rare did not improve in case of NIST-Bozorth3 but it did slightly improve in the case of Ver-

iFinger. We can also notice that modification of similarity scores based on the fitting error (both

Manual and Automatic) significantly improves the rank identification accuracies of both NIST-
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Figure 5.5: Improvement in rank identification when incorporating rare minutia features.
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Matcher Typical Features Typical + Rare Weighted Scores - Weight Scores -

(Rank-1) (Rank-1) Manual (Rank-1) Automatic (Rank-1)

NIST-Bozorth3 25.37 22.01 64.93 64.18

VeriFinger 31.72 37.31 72.76 60.82

Table 5.3: Rank-1 identification (in %) for NIST-Bozorth3 and VeriFinger under various categories of

analysis.

Bozorth3 and VeriFinger. For NIST-Bozorth3, the Rank-1 identification improved from 25.37%

to 64.18%, and for VeriFinger, the Rank-1 identification improved from 31.72% to 60.82% when

rare minutia features were incorporated and the similarity scores are modified based on the

fitting error proposed in our algorithm.

Table 5.3 summarizes the Rank-1 accuracy for both NIST-Bozorth3 and VeriFinger under

the four configurations considered. The improvement in rank identification accuracy is very

similar for Manual and Automatic modification of similarity scores for NIST-Bozorth3. In case

of VeriFinger, the Rank-1 identification for Automatic is slightly lower than Manual, but beyond

Rank-5, the identification accuracy remains the same.

5.3.3. Experiment 3: Parameters - Optimal fitting error threshold

The fitting error threshold E plays a crucial factor in algorithm. So, arriving at an optimal

threshold value is of importance. Figures 5.6(a) and 5.6(b) show the performance of both

NIST-Bozorth3 and VeriFinger for various fitting error thresholds. The Rank-5 identification

accuracies are analyzed for fitting error thresholds ranging from 1 to 15.

We analyzed that beyond the threshold value of 4, the system starts to degrade the perfor-

mance. So, we chose an optimal threshold value of E = 4 for the experiments reported in the

rank identification accuracies of both NIST-Bozorth3 and VeriFinger.

5.4. Discussions

We proposed a method that makes use of reliably extracted rare minutia features to improve

the rank identification accuracies for minutiae matchers when dealing with latent fingerprints.

The usefulness of the proposed model is demonstrated on two widely used minutiae-based

matchers, NIST-Bozorth3 and VeriFinger. Both matchers showed significant improvements in

the rank identification accuracies when their similarity scores were modified based on the fitting

error proposed in our methodology. We conclude that even if we have only few number of
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Figure 5.6: Optimal threshold for the fitting error chosen based on Rank-5 identification accuracy.
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minutiae in a partial latent, the presence of reliably extracted rare minutia features makes the

comparison more robust. In our experiments, we used the rare minutia features that were

manually extracted by forensic examiners. Developing more robust automatic extraction of

rare minutiae can significantly improve the current state of the art in AFIS adapted for latent

fingerprints.
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Chapter 6

Related works in Evidence

evaluation using Likelihood Ratios

In this chapter, we address the issue of the interpretation of forensic evidence from scores

computed by a biometric system. This is one of the most important topics into the so-called

area of forensic biometrics. We will show the importance of the topic, and how to address it

using the previously proposed systems to incorporate rare minutiae in the Thesis. The main

objective of the Chapter is to propose a solution to evaluate the forensic evidence using the

systems proposed in this Thesis. Moreover, we will show how the incorporation of rare minutiae

improve the performance of the system, also at the level of forensic interpretation.

6.1. Likelihood Ratio framework for evidence evaluation

The evaluation of the relationship between two pieces of evidence at judicial trials has been

the subject of discussion in the past years [Saks and Koehler, 2005]. Here, the problem is to

give a value to a comparison of a questioned material or evidence (namely trace, for instance

a latent fingerprint in a crime scene or a wire tapping involving an incriminating conversation)

with some control material of known origin (for instance, a fingerprint from a suspect, or some

recordings of a known individual). From a formal logical perspective [Cook et al., 1998b], the

given value should represent the degree of support of the comparison to any of the proposi-

tions (or hypotheses) involved in the trial. Examples of simple hypotheses might be “the trace

and the control materials were originated from the same source” or “the trace and the control

materials were originated from different source”, but more complex hypotheses can be con-

sidered [Cook et al., 1998b]. In some sense, the value of the evidence represents the weight of

the link between the trace and the control material in the context of the propositions considered.

Evidence evaluation using a Bayesian probabilistic framework has been proposed in recent

years as a logical and appropriate way to report evidence to a court of law [Aitken and Taroni,
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2004]. In Europe, initiatives to foster this approach, some of them in response of notorious

miscarriages of justice [Various, 2011], have led to the release of a Guideline [Willis, 2015] by

the European Network of Forensic Science Institutes (ENFSI), an organization that includes

almost all the main forensic laboratories in Europe. According to this Guideline, a Bayesian

framework for forensic evaluative reports is recommended for all disciplines and laboratories

within ENFSI. Under this Bayesian approach, a likelihood ratio is computed to represent the

value of the evidence, and to be reported to a court of law. This framework clearly complies with

the requirements of modern forensic science [Saks and Koehler, 2005]: it is scientifically sound

(transparent procedures, testability, formally correct), and clearly separates the competences of

the forensic examiner and the court. The establishment of this Bayesian evaluative framework

has motivated the convergence of pattern recognition and machine learning approaches to yield

probabilistic outputs in the form of likelihood ratios. A common architecture for this considers

two steps: first, the computation of a discriminating score between two evidential materials

(e.g., a latent fingerprint in the crime scene and an exemplar fingerprint from a known suspect),

which can be obtained from a standard biometric system; and second, the transformation of the

score into a likelihood ratio. This process of transforming scores relating two pieces of evidence

into likelihood ratios has been dubbed calibration [Brümmer and du Preez, 2006; Ramos and

Gonzalez-Rodriguez, 2013; vanLeeuwen and Brümmer, 2007].

6.1.1. Challenges in LR based evidence evaluation

Despite its advantages, the computation of likelihood ratios still presents important chal-

lenges. We enumerate the most important as follows. First, complex evidence evaluation cases

are still problematic. Probabilistic graphical models, particularly Bayesian networks [Taroni

et al., 2006], have been proposed to address those situations. However, this emerging field is still

an active area of research, and more efforts are needed in order to provide forensic examiners with

appropriate models in particular scenarios, especially if those models are to be learned from data.

Second, the typical scenario in forensic science involves data presenting variable and unfavor-

able conditions, which means that automatic comparisons between traces and control materials

will result in a challenging problem. Efforts to model or compensate this variability in likeli-

hood ratio computation should be improved. Some works such as [Zadora and Ramos, 2010]

have contributed to evaluate the impact of this problem. Moreover, integration of advanced

machine learning algorithms (like in [Dehak et al., 2010; Li et al., 2010]) for variability compen-

sation into forensic evaluation is a solution to this, although it still remains a challenge.

Third, in forensic science the databases are difficult to obtain and to use, even for research

purposes. This is because, although there is plenty of forensic data in some disciplines (e.g.,

large fingerprint databases), there are interoperability, legal and privacy issues that difficult the

use of this data. This leads to two opposite situations: either the databases are big or the
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databases are highly scarce. The use of robust models to data scarcity has been tackled by

different techniques as in [Villalba and Brummer, 2011; Zadora et al., 2014]. However, to our

knowledge, evidence evaluation models have not been adapted to big-data scenarios to handle

big databases when possible, which represents a loss of information in these scenarios.

Fourth, although likelihood ratio computation methods are becoming more and more pop-

ular, the validation of those methods is still not standardized. Even if likelihood ratios are

computed to evaluate the links between evidential materials, this does not guarantee that they

will be able to be integrated into a Bayesian decision framework. Likelihood ratios should

present the best possible calibration in order to properly assist decision makers and fact finders

in judicial processes [Ramos and Gonzalez-Rodriguez, 2013]. Calibration is a property of a set

of likelihood ratios, by which the LR is itself a measure of evidential weight. This leads to the

property that ‘The LR of the LR is the LR’, meaning that the LR is interpreting the evidence

with the best probabilistic meaning in terms of Bayes decisions [van Leeuwen and Brummer,

2013]. In that sense, computing likelihood ratios is not enough, they should also be the best

calibrated as possible. There are current efforts of the forensic community in order to establish

formal frameworks for the validation of likelihood ratio models [Haraksim et al., 2015a; Ramos

and Gonzalez-Rodriguez, 2013; Ramos et al., 2013], but research is still needed.

6.1.2. Related works

Evidence evaluation in fingerprints by the use of LR has been recently proposed in remarkable

works like in [Neumann et al., 2012] for minutiae configurations extracted manually from forensic

examiners. There, distances are computed in order to do the comparison. Other models based

on the use of AFIS scores to compute likelihood ratio values can be found in [Egli, 2009], and

more recently [Haraksim et al., 2015a]. Models of fingerprint evidence evaluation have been

recently reported in [Neumann et al., 2015]. To our knowledge, there have been no models for

LR computation including information about rare minutiae as proposed in this Thesis.

6.2. Case assessment and interpretation methodology

As previously mentioned, a milestone in the use of the LR methodology in Europe was

the Case Assessment and Interpretation (CAI) methodology developed by the Forensic Science

Service (FSS) in the late 90’s [Cook et al., 1998b]. This was the result of the efforts of the now

closed Forensic Science Service of the United Kingdom, in order to homogenize and make more

agile the relationship between court and forensic service providers (e.g., police forces or other

public or private forensic laboratories). The ultimate aim is the use of a logical methodology to

avoid pitfalls of reasoning and fallacies. The methodology has been described in several papers

during the end of the 20th century [Cook et al., 1998a,b; Evett et al., 2000].
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There are several characteristics that are typical from this CAI methodology, which we

summarize below.

Full integration of the LR methodology into the forensic evidence evaluation process. In

this sense, all the elements typical from LR evidence evaluation are present, namely the

evidence, propositions, probabilistic reasoning and assignment, etc.

A particular emphasis is put in the definition of the propositions in the case, which have

to be informed by the circumstances of the case. In that sense, the relationship between

the court and the forensic science provider should be essential in order to define the

propositions. Issues like the definition of the population used to model the alternative

proposition, the specificity of the propositions with respect to the population, the suspect

and the trace, or the selection of the most appropriate database to address the propositions

[Champod et al., 2004], are of particular importance.

A hierarchy of propositions [Cook et al., 1998a] is introduced in order to address the

forensic casework in the most appropriate manner with respect to the information in the

case. In this sense, there are three basic levels in the hierarchy: source level, the lowest

level of all, where issues about source attribution are considered; activity level, where the

perpetration of a determined act is under discussion; and offence level, the highest level,

where the commission of a crime is considered. Depending on the information in the case

available to the forensic scientist, it is possible to climb up to higher level, but in most

cases the forensic scientist is confined to the source level, especially nowadays when models

for activity or offence level are under discussion and research.

Case pre-assessment is encouraged by the model. Under this concept, a preliminary LR

value is reported prior to the case itself, in order to indicate what would be the expected

outcome of the forensic analysis by the examiner. This helps to aim the expectations of

the client, and has important implications regarding the efficiency of resources in a case.

The CAI methodology is not possible to be fully implemented in this Thesis. However, there

are several issues that are possible to address for the proposed fingerprint matchers. First, the

LR methodology will be followed. Second, we will try to define our propositions according to

the information present in the Guardia Civil database, which will be used to simulate forensic

cases. Third, appropriate databases will be selected to model the propositions according to the

limitations in the simulated forensic scenarios.

6.3. Evidence evaluation with Likelihood Ratios

The LR framework for interpretation of the evidence represents a mathematical and logical

tool in order to aid in the inference process derived from the analysis of the evidence. In this

methodology, the objective of the forensic scientist is computing the likelihood ratio (LR) as a
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degree of support of one proposition versus its opposite [Aitken and Taroni, 2004; Champod and

Meuwly, 2000].

The LR framework is stated as follows. Consider the forensic fingerprint evidence E as

the materials to compare in a forensic case, namely a recovered latent fingerprint of unknown

origin and a control fingerprint (the exemplar) whose origin is known. In a forensic case, the

unobserved variable of interest is the true proposition H = {Hp, Hd}, where Hp and Hd are the

prosecution and defense propositions according to the CAI methodology.

Bayes’ theorem [Aitken and Taroni, 2004] relates probabilities before and after evidence

analysis:

P (Hp |E, I) =
p (E|Hp, I) · P (Hp | I)

p (E| I)
(6.1)

where I is the background information available in the case not related to the evidence E, as

defined by the CAI methodology. Equation 6.1 then allows the following inference:

P (Hp |E, I)

P (Hd |E, I)
= LR · P (Hp | I)

P (Hd | I)
(6.2)

LR =
p (E|Hp, I)

p (E|Hd, I)
(6.3)

Equation 6.2 is the so-called odds form of Bayes’ theorem. In this framework, we can

distinguish two values:

1. The prior probabilities P (Hp | I) = 1 − P (Hd | I), which are province of the fact finder

and should be stated assuming only the background information (I) in the case [Evett,

1998].

2. The LR (Equation 6.31), computed by the forensic scientist [Aitken and Taroni, 2004].

The LR value (Equation 6.3) is the quotient of two probability densities. On the one hand,

the probability density function (pdf) p (E|Hp, I) in the numerator in Equation 6.3 is known

as the within-source distribution. Its evaluation in the particular value of the evidence E gives

a measure of the probability of observing the evidence under Hp. On the other hand, the pdf

p (E|Hd, I) in the denominator is known as the between-source distribution, and its evaluation

1Unless explicitly stated, we will use a capital E for referring to the given value of the evidence, according

to the literature on LR−based analysis of the evidence [Aitken and Taroni, 2004; Champod and Meuwly, 2000].

Thus, the small e will be used as the argument in likelihoods.
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in the particular value of the evidence E gives a measure of the probability of observing the

evidence under Hd. Both values should be computed in a transparent way by the forensic eval-

uation system. It is also the duty of the forensic evaluation system, following the background

information of the case (I), to select the population of individuals which will be proper for the

case at hand1.

This LR-based framework presents many advantages in a forensic context:

It allows forensic scientists to evaluate and report a meaningful value for the weight of the

evidence to the court [Champod and Meuwly, 2000].

The role of the examiner is clearly defined, leaving to the court the task of using prior

judgments or costs in the decision process.

Probabilities can be interpreted as degrees of belief [Taroni et al., 2001], allowing the in-

corporation of subjective opinions as probabilities in the inference process in a clear and

scientific way.

The LR value has an interpretation as a support to a previously stated opinion, due to the

analysis of the evidence E. In other words:

If the LR> 1 the evidence will support that H = Hp, i.e., the prosecutor proposition.

If the LR< 1 the evidence will support that H = Hd, i.e., the defense proposition.

Moreover, the value of the LR represents the degree of support of the evidence to the value

of H. For instance, LR= 3 means that “the evidence supports the odds in favor of H = Hp with

a degree of 3”. Therefore, a single LR value has a meaning by itself.

It is important to note that the LR supports an opinion about H, but the LR is not an

opinion about H. Opinions about H are represented as probabilities or, in our binary case, odds

in favor of a given outcome of H. Therefore, it is not possible to make a decision about the

value of H based solely on the value of the LR, because decisions will be taken from posterior

opinions as it will be shown later in this chapter.

1The background information about the case I will be eliminated from the notation for the sake of simplicity

hereafter. It will be assumed that all the probabilities defined are conditioned to I.
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6.4. Performance measurement of LR methods

A solution to measure the performance of likelihood ratio values has been proposed in

[Brümmer and du Preez, 2006] for speaker recognition, and has been dubbed log-likelihood-

ratio cost (Cllr). Later, it has been used in many other fields [Ramos et al., 2013]. Cllr is

defined as follows:

Cllr =
1

2 ·Np

∑
ip

log2

(
1 +

1

LRi

)
+

1

2 ·Nd

∑
jd

log2 (1 + LRj) (6.4)

where Np and Nd are respectively the number of LR values to evaluate where Hp and Hd are

respectively true. The indices ip and jd respectively denote summing over the LR values where

each proposition is respectively true.

An important result is derived in [Brümmer and du Preez, 2006], where it is demonstrated

that Cllr is the expected decision cost for any value of false alarms and false rejections for ev-

ery value of decision costs involved in a Bayesian decision [Duda et al., 2001], and assuming

P (Hp) = P (Hd) = 0.5. This important result means that minimizing the value of Cllr also

encourages to obtain reduced Bayes decision costs for a wide range of decision costs. When

the LR is used to make a decision (as it should happen on trial), the minimization of Cllr im-

plies the minimization of the average expected cost of the decisions, assuming a non-informative

prior probability. This property has been highlighted as extremely important in forensic science

[Ramos and Gonzalez-Rodriguez, 2013].

In [Brümmer and du Preez, 2006], an algorithm known as Pool Adjacent Violators is used

in order to decompose Cllr as follows:

Cllr = Cminllr + Ccalllr (6.5)

where:

Cminllr represents the discrimination loss of the system under evaluation. It is obtained by

the Cllr of the LR values obtained after PAV-optimization. Cminllr is the lowest Cllr value

which a LR set can achieve while preserving the discriminating power of the LR set under

evaluation. Therefore, the expected cost due to Cminllr is due to non-perfect discriminating

power.

Ccalllr represents the calibration loss of the system under evaluation with respect to the best

system preserving discrimination. It is computed as Ccalllr = Cllr − Cminllr . If the LR values

under evaluation converge to the PAV-calibrated LR values, then Ccalllr will be reduced.

Cllr is a scalar measure of performance of LR values. Here Empirical Cross-Entropy (ECE)

plots are presented in order to show the overall performance of the set of LR values in terms of
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accuracy, which takes into account both the discriminating power of the set of LR values, and

also the calibration. Figure 7.9 shows several ECE plots. ECE is defined as a generalization of

Cllr as the average value of the logarithmic scoring rule, weighted in the following way:

ECE = − P (Hp|I)

Np

∑
i:Hp is true

log2P (Hp|Ei, I)

− P (Hd|I)

Nd

∑
j:Hd is true

log2P (Hd|Ej , I), (6.6)

where Ei and Ej denote the evidence in each of the comparisons (cases) in the validation set

where either Hp or Hd is true, Np and Nd are the numbers of cases, and I is the background

information. It is informative to express ECE explicitly in terms of the prior odds, which can

be shown to be:

ECE =
P (Hp|I)

Np

∑
i:Hp is true

log2

(
1 +

1

LRi ×O (Hp|I)

)

+
P (Hd|I)

Nd

∑
j:Hd is true

log2 (1 + LRj ×O (Hd|I)), (6.7)

where O (Hp|I) =
P (Hp|I)
P (Hd|I) are the prior odds in favour of Hp.

As it can be seen in Equations (6.6) and (6.7), the averages in ECE are weighted by the

value of the prior probabilities. This weighting allows ECE to be interpreted in an information-

theoretical way, but this topic is outwith the scope of this work [Ramos et al., 2013].

Equation (6.7) shows that ECE depends on the validation set of LR values in the experiment

(i.e. the LR values and their corresponding ground-truth labels). However, ECE also depends

on the value of the prior odds O (Hp|I), since there is dependence on the posterior probabilities.

Thus, ECE can be represented in a prior-dependent way. An example of such a representation

can be seen in Figure 7.9. Base-10 logarithms are used for the prior odds in the X axis be-

cause they are typically used for evidence evaluation. However, base-2 logarithms are used for

computation of ECE because of its information-theoretical interpretation.

ECE in Figure 7.9 represents the accuracy for all the possible values of the prior probabil-

ity, but calibration is not explicitly measured in such a representation. Therefore, an explicit

measurement of discriminating power and calibration is given in a so-called ECE plot [Ramos

et al., 2013], which shows three comparative performance curves together:

solid, red curve: accuracy. This curve is the ECE of the LR values in the validation set,

as a function of the prior log-odds. The lower this curve, the more accurate the method;
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dashed, blue curve: perfectly calibrated accuracy. This curve is the ECE of the validation

set of LR values after being perfectly calibrated, as a function of the prior log-odds.

Therefore, this shows the performance of a validation set of optimally-calibrated LR values

obtained by a transformation applied to the original validation set of LR values. In order

to obtain this curve the value of the ground-truth labels should be known. Therefore, this

curve is not possible to obtain in practice, and represents a ceiling of performance useful to

measure calibration. Details about the procedure of obtaining these calibrated LR values

are outwith the scope of this work, and can be found in [Brümmer and du Preez, 2006] and

[Ramos et al., 2013]. The transformation is essentially conducted by the Pool Adjacent

Violators algorithm, as it happened for obtaining Cminllr , and therefore this curve in the

ECE plots is sometimes referred to as accuracy after PAV ;

dotted curve: neutral reference. It represents the comparative performance of a so-called

neutral LR method, defined as the one which always delivers LR= 1 for each forensic case

simulated in the set of LR values. This neutral method is taken as a floor of performance:

the accuracy should always be better than the neutral reference. Therefore, the solid curve

in an ECE plot should be always lower than the dotted curve, for all represented values

of the prior log-odds (the names floor and ceiling are the opposite of the usual physical

connotations but are chosen to represent the lowest and highest levels of performance).

Thus, and according to [Ramos and Gonzalez-Rodriguez, 2013; Ramos et al., 2013], the

following are represented (in ECE plots):

accuracy: solid curve. The lower the curve, the better the accuracy;

discriminating power: dashed curve. The lower the curve, the better the discriminating

power. The justification that the ECE after PAV represents the discriminating power can

be found in [Brümmer and du Preez, 2006] (with a theoretical development) and in [Ramos

and Gonzalez-Rodriguez, 2013] (more adapted to forensic science);

calibration: difference between the solid and dashed curves. The closer the dashed and

the solid curves, the better the calibration.

6.5. LR computation methods

In this subsection, some common algorithms for LR computation are described. These are

the ones which will be used in this Thesis.

6.5.1. Gaussian Maximum Likelihood (Gaussian-ML)

LR computation in forensic automatic speaker recognition has been classically performed

by the use of generative techniques modelling the hypotheses-conditional distribution of the

evidence scores E. This is the approach already presented in [Meuwly, 2001], and has been

103



Chapter 6. Evidence evaluation

followed in subsequent works in the literature. Under this approach, the objective is assigning

the likelihoods p (E|Hp) and p (E|Hd) respectively to the scores in the training set, in order to

compute the LR value.

Assigning p (E|Hp) and p (E|Hd) implies the selection of a proper model. The most straight-

forward choice for biometric scores could be the Gaussian distribution, obtained via Maximum

Likelihood from the training set of scores. However, this requires the distributions involved

to present a good fitting with Gaussian probability density functions, which is not typically

the case. Fortunately, some score normalization techniques such as T-Norm tend to generate

Gaussian distributions for scores when Hd is true [Navratil and Ramaswamy, 2003], as will be

pointed out in the experiments to follow.

6.5.2. Logistic regression

Logistic regression is a well-known pattern recognition technique widely used for many prob-

lems including fusion [Brümmer et al., 2007; Pigeon et al., 2000] and more recently calibration

[Brümmer and du Preez, 2006; Gonzalez-Rodriguez et al., 2007]. The aim of logistic regression

is obtaining an affine transformation (i.e., shifting and scaling) of an input dataset in order to

optimize an objective function. Let E = {E1, E2, . . . , EK} be a set of scores from K different

biometric systems. The affine transformation performed by the logistic regression model can be

defined as:

flr = log (O (Hp|E)) = a0 + a1 · E1 + a2 · E2 + . . .+ aK · EK (6.8)

Using Bayes theorem in odds form this expression allows the computation of the logarithm of

the LR value for a given value of the prior probabilities.

log (LR) = a0 + a1 · E1 + a2 · E2 + . . .+ aK · EK − log (O (θp))

= a′0 + a1 · E1 + a2 · E2 + . . .+ aK · EK (6.9)

which leads to the following logistic regression model :

P (Hp|E) =
1

1 + e−flr
=

1

1 + e− log(LR)−log(O(Hp))
(6.10)

As it can be seen, the logistic regression transformation from score values to posterior log-

odds is invertible unless it is a constant function. The weighting terms {a0, a1, a2, . . . , aK} can

be obtained from a set of training data with optimization procedures found in the literature1.

For a given value of the prior odds (O (Hp)) we may define f tlr = a0 +
∑K

j=1 ajE
t
j as the value

1In this Thesis we have used the FoCal toolkit for training logistic regression models

(http://niko.brummer.googlepages.com).
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obtained for a given set Et =
{
Et1, . . . , E

t
K

}
of target scores from the K biometric systems.

On the other hand, let define fntlr = a0 +
∑K

j=1 ajE
nt
j the value obtained for a given set Ent ={

Ent1 , . . . , E
nt
K

}
of non-target scores from the K biometric systems. Logistic regression computes

the {a0, a1, a2, . . . , aK} coefficients by making P (Hp|E) as close as possible to 1 for target trials

and to 0 for non-target trials, constrained to the logistic regression model (Equation 6.10). It

can be derived [Brümmer et al., 2007; Pigeon et al., 2000] that such optimization leads to the

following objective to minimize:

Cwlr = P (Hp) ·
1

Nt

Nt∑
i=1

log2

(
1 + e−f

t
lr,i

)
+ P (Hd) ·

1

Nn

Nn∑
i=1

log2

(
1 + ef

nt
lr,i

)
= ECE (6.11)

where Nt is the number of f tlr values and Nnt is the number of fntlr values, both in the training

set. As it is highlighted in Equation 6.11, the optimization objective in logistic regression is

precisely the Empirical Cross-Entropy (ECE) of the training score set. For a given value of

P (Hp) and assuming a logistic regression model, ECE is convex with respect to the weighting

terms {a0, a1, a2, . . . , aK}, and therefore it has a global minimum [Brümmer et al., 2007].

As logistic regression optimizes ECE, it can be used for calibration as well as for fusion.

If the number of systems K is more than one, we will be fusing the input scores and mapping

them to a single value of the posterior log-odds. As an additional effect, because of the objective

function optimization, the output of such a fusion will tend to be calibrated. On the other hand,

if K = 1 then the input score is transformed by an affine mapping which will tend to give a

calibrated output.

Therefore, for a given value of the prior probabilities, but using Equation 6.9, posterior log-

odds are mapped again into log (LR) values which will also tend to be calibrated. If the prior

probabilities are known, the value of P (Hp) can be set. If the prior probabilities are unknown,

the log (LR) value can be obtained for an arbitrary value of the prior, and it will tend to be

calibrated for any value of the prior. A typical choice for this prior may be P (θp) = 0.5, and

therefore logistic regression will optimize Cllr in that case.

6.5.3. Pool Adjacent Violators (PAV) calibration

Another approach to score calibration has been proposed by the use of the Pool Adjacent

Violators (PAV) algorithm [Brümmer and du Preez, 2006]. The PAV algorithm transforms a

set of scores into a set of calibrated LR values. However, it is only possible to apply an optimal

PAV transformation if the ground-truth labels of the propositions for each score in the set are

known. Nevertheless, as suggested in [vanLeeuwen and Brümmer, 2007], a PAV transformation

can be trained on a set of scores for which the true value of the hypotheses are known and then

apply the trained transformation to scores for which the hypothesis value is unknown. Although
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a straight use of PAV leads to a non-invertible transformation, several smoothing techniques can

be applied to PAV in order to keep it monotonically rising. For instance, adding an infinitely

small slope to PAV will lead to an invertible transformation. Interpolating with linear, quadratic

or splines approaches are also possible smoothing schemes.
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Incorporating rare features in LRs :

Experiments

7.1. Analysis of score distributions from fingerprint recognition

systems

In this section, we analyze the distributions of the scores from the minutiae-based finger-

print recognition systems which incorporates extended feature sets as proposed previously in

this Thesis. The reason for this is two-fold. First, we want to detect the suitability of those

systems for a LR framework for evidence evaluation. In some cases, this will imply a decision of

not using those systems for evidence evaluation unless there is an appropriate model to address

those distributions. In other cases, further stages will be needed to properly compute LR values

that take advantage of the information contained in the scores. Second, we would like to guess

what the best model could be used in order to model the probabilities in the numerator and the

denominator of the LR. After this analysis stage, we should be able to propose several models

for LR computation for several systems proposed in the Thesis.

7.1.1. Histograms of pooled scores

Here we analyze the histograms of pooled scores, i.e., all the scores from all the queries in

the database put together.

Figures 7.1 to 7.3 shows the histograms for the three algorithms (namely MCC, NIST-

Bozorth3 and VeriFinger) and the four configurations to include rare minutiae (namely Typical,

Typical+Rare, Manual and Automatic).
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Four configurations are summarized as follows:

1. Typical Features: Only the typical minutia features (ridge-endings and bifurcations) were

used, i.e, the fingerprint templates contained only typical features and similarity scores

were generated only using the minutiae matchers.

2. Typical + Rare (all processed as Typical): Both the typical minutia features and rare

minutiae features were used, considering both as typical minutiae.

3. Weighted Scores - Manual : The match and non-match comparisons were not automati-

cally decided but manually partitioned. The similarity scores were rewarded for match

comparisons and penalized for non-match comparisons without any error.

4. Weight Scores - Automatic: The similarity scores generated by the minutiae matchers are

modified automatically based on fitting error alone as described in Section 5.2.

From the observation of the histograms, several conclusions can be extracted. First, the

amount of zeroes in the histograms of systems using NIST-Bozorth3 and VeriFinger algorithms

is very high. This means that the score value of zero accumulates many genuine and impostor

scores altogether. This is not the case for the MCC algorithm, where the amount of values

equal to zero is much more restricted. It is seen that for MCC-Automatic and MCC-Manual

approaches there are many scores close to zero, but they are not exactly zero, as it can be seen

in Figure 7.4. This is because the raw score of the minutiae-based matchers are modified based

on the fitting error extimated with respect to the rare minutia feature as described in Equa-

tion 5.9. However, this will be corrected by the use of score normalization techniques, which

will be analyzed further. Worth noting, score normalization techniques cannot easily correct

the behavior of the scores coming from NIST-Bozorth3 or VeriFinger algorithms, because many

scores are actually zero, not close to zero as in MCC-Automatic and MCC-Manual.

This behavior of NIST-Bozorth3 and VeriFinger algorithms represents a problem for standard

LR computation algorithms in the continuous domain, because they use to model probability

density functions, and there is not a clear density that can properly fit the scores in these sys-

tems. Since the objective of this chapter is to propose a LR method to confirm the importance

of rare minutiae in forensic evidence evaluation, and not to propose a novel LR method, we

have decided to consider only the MCC algorithm for the remainder of the chapter. This will

perfectly serve to illustrate the objectives of the chapter. In the future we will explore more

flexible algorithms to deal with score distributions partly concentrated in zero values, as they

are quite common in AFIS technology1.

1These scores are commonly known as early-outs.
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Figure 7.1: Histograms of pooled scores for (c) and NIST-Bozorth3-Typical (a), NIST-Bozorth3-

Typical+Rare (b), NIST-Bozorth3-Automatic (c), NIST-Bozorth3-Manual (d).
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Figure 7.2: Histograms of pooled scores for (c) and VeriFinger-Typical (a), VeriFinger-Typical+Rare

(b), VeriFinger-Automatic (c), VeriFinger-Manual (d).
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Figure 7.3: Histograms of pooled scores for (c) and MCC-Typical (a), MCC-Typical+Rare (b), MCC-

Automatic (c), MCC-Manual (d).

111



Chapter 7. LR framework

0 2 4 6 8 10

x 10
−3

0

10

20

MCC−Automatic

 

 

H
p
 True

0 2 4 6 8 10

x 10
−3

0

1

2
x 10

4

 

 

H
d
 True

(a)

0 2 4 6 8 10

x 10
−3

0

0.5

1
MCC−Manual

 

 

H
p
 True

0 2 4 6 8 10

x 10
−3

0

1

2
x 10

4

 

 

H
d
 True

(b)

Figure 7.4: Histograms of pooled scores with detail in scores close to 0 for MCC-Automatic (a), MCC-

Manual (b).
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Regarding MCC algorithm scores, another consequence of the distribution of the scores is

that it is quite difficult to imagine a parametric model assigned to the scores for Automatic

and Manual approaches. The reason is that there are two clear modes in the impostor distri-

bution mainly, due to the process of altering the scores where rare minutiae are present. As

a consequence, parametric models for LR computation like those based on Gaussian distribu-

tions cannot be used, because Gaussian pdf is unimodal and must be fit to a multimodal score

distribution. Moreover, the use of smooth densities would be problematic, because there are

many scores concentrated into a very narrow interval in Automatic and Manual score distri-

butions. This would present problems for approaches such as Gaussian mixture models. This

can be solved by the use of Gaussianization techniques like some score normalization methods

such as Test-Normalization (T-Norm) [Navratil and Ramaswamy, 2003], as it can be seen below.

7.1.2. Query-by-query analysis of scores

In this section, we analyze the behavior of the score distributions when they are analyzed

for each latent fingerprint query separately, for all systems using the MCC minutiae matching

algorithm. The aim is to confirm whether the scores are misaligned or not.

Figure 7.5 shows a representation of the scores in a query-by-query basis, for all the four

categories to include rare minutiae using our proposed method on the MCC algorithm. It can

be seen that the alignment of the impostor scores is moderate for the Typical and Typical+Rare,

although it can be improved. However, the scores for Automatic and Manual analysis are com-

pletely misaligned, due to the procedure used to change the value of the score when rare minutiae

are present. This problem of misalignment will be highly problematic for LR models if all scores

are pooled together in order to assign probability distributions for the LR. This pooling, as it

will be seen in the following section, will be necessary due to the definition of the propositions

in the simulated forensic scenario in this Thesis. Therefore, score normalization techniques will

be necessary in order to align the impostor distribution of scores, especially for Automatic and

Manual approaches.

7.2. Proposed LR methods

This section proposes several methods for likelihood ratio computation using scores from

the MCC algorithm with the Guardia Civil database (GCDB) described in Section 5.1. Several

decisions made in this section are justified according to the analysis in Section 7.1.
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Figure 7.5: Per-query representation of the scores of the MCC system. Red crosses are always impostor

scores and blue circles are genuine scores. X-axis represent the score value, and y axis is discrete and

represent the index of each of the latent fingerprint queries. Thus, in each row of the graph the genuine

and impostor scores of a single query are represented. Black asterisks indicate the threshold of the Equal

Error Rate for each query ( row). Four approaches to include rare minutiae are represented: Typical (a),

Typical+Rare (b), Automatic (c) and Manual (d).
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7.2.1. Definition of propositions

According to the methodology of CAI, the first step to compute likelihood ratios is to estab-

lish the propositions according to the information present in the case.

The forensic cases that we are going to simulate here consist of the comparison of one la-

tent fingerprint and one exemplar fingerprint. Both latent and exemplar fingerprint come from

GCDB. The scores used to train the models for LR computation are the rest of scores in the

GCDB generated from individuals different from the donors of the latent and the exemplar

fingerprint. This way, the models are trained with scores not used in the case, and the data

handling is honest in the sense of the performance measurement.

According to this set-up, there are several observation that are in order:

The information in the case is almost non-existent. We only have the images of the latent

and the exemplar fingerprint, and therefore no assumption can be done about the donors

of latent and exemplar (e.g. ethnicity, gender, etc.). This only allow generic proposition

about the populations involved.

The number of the suspect is not known for us. We can only say that there is a latnet

and a exemplar fingerprint, but we will not have a name of the donor of the print (due to

privacy issues).

We only have a single genuine comparison for each subject in the database. Therefore, it

is impossible for us to focus in models aimed at the suspect, because there is no additional

data available to model the particular behavior of their scores in comparison to the whole

population of scores.

There is no information whatsoever about the relevance of the donor of latent and exem-

plar fingerprint with respect to the action in the crime scene, or even more with respect

to any offense. Therefore, only propositions at source level can be addressed.

Because of the way it was built, we assume that all latent fingerprints in the GCDB dubbed

as different in the ground-truth labels are generated by different people. It is assumed also

in the corresponding exemplar fingerprint. Therefore, in this database it will be equivalent

to talk about donors as about fingers, since different fingerprints will definitely belong to

different donors (and not to different fingers of the same donor).
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Under this premises, we decide to state source-level, person-generic and general-population

propositions for this case. Therefore, we have the following propositions:

Hp: The finger that originated the latent fingerprint is the same finger that originated the

exemplar fingerprint.

Hd: The donor that originated the latent fingerprint is not the suspect, but other donor from

a wide population of individuals whose characteristics have not been specified.

This definition of propositions implies that, for a forensic case involving the comparison of a

latent fingerprint and its corresponding exemplar fingerprint, the scores needed to train the LR

model should be generated with comparisons of latents and exemplar fingerprints without the

constrain of belonging to a particular individual. This implies that more scores will be typically

available to train the models, therefore improving their statistical robustness. On the other

hand, the use of person-generic propositions inevitably implies an important loss of information

in cases where the identity of the individual is known, as it is typical in court. However, for this

Thesis we will consider this person-specific scenario because of the limitations of the GCDB, as

explained above.

7.2.2. T-Norm score normalization

Here we describe the score normalization method that is used in this Thesis in order to align

the scores in a query-by-query basis.

Score normalization is defined as a transformation to the output scores of a biometric system

in order to reduce misalignment in the score ranges due to variations in the conditions of a com-

parison. We may classify score normalization techniques into: i) reference-dependent, when the

variability is compensated for reference (exemplar) fingerprint; and ii) query-dependent, when

the variability is compensated for the query latent fingerprint.

Many score normalization techniques have been presented in the literature. The most popu-

lar and widely-used family of normalization techniques is the so-called impostor-centric [Fierrez-

Aguilar et al., 2005], where the normalization parameters are estimated from score distributions

where Hd is true. In this Section we describe Test-Normalization (T-Norm) as one of the most

popular impostor-centric score normalization techniques.

Test-Normalization, or T-Norm [Auckenthaler et al., 2000], exploits the idea that different

query latent fingerprint can present different behavior in terms of the range of the scores gener-

ated. In this case, impostor scores are generated from a given query, and therefore a distribution

of impostor scores for that particular query can be assigned. In order to do that, a set of impos-

tor fingerprints, namely a cohort of impostors, is needed. From those so-called T-Norm scores,
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the mean and the standard deviation µTnorm and σTnorm are computed. The T-Norm technique

is then applied to a particular score computed form that latent fingerprint query as follows:

sTnorm =
sraw − µTnorm

σTnorm
(7.1)

Thus, T-Norm performs query-dependent score normalization, and the result is the align-

ment of the query-dependent impostor score distributions for all comparisons in the particular

set of scores. Thus, this normalization technique compensates variability in the scores due to

the recovered latent fingerprint.

T-Norm presents a key advantage for AFIS technology (like the one developed in this The-

sis) with respect to other score normalization methods: the use of T-Norm does not change

the CMC characteristic of AFIS technology, and therefore it does not degrades it performance.

This is explained as follows. T-Norm applies a linear transformation to all the scores generated

from the same query latent fingerprint. Therefore, the query-by-query alignment improves, but

the discriminating power of the scores for each query does not change. This means that the

CMC curve of a set of scores which uses T-Norm will not change at all, because it is computed

considering latent fingerprint queries separately. As a consequence, we can safely apply T-Norm

to any AFIS systems without the risk of degrading CMC performance.

Although many advantages of T-Norm are well known in areas like speaker recognition

[Auckenthaler et al., 2000; Navratil and Ramaswamy, 2003], it has also some disadvantages.

The main one is that it needs a cohort of fingerprints that matches as much as possible the

conditions of the fingerprints in the database to search. This has two consequences: on the one

hand, some additional data is needed1; on the other hand, the more divergence of the conditions

of the cohort with respect to those of the reference fingerprints in the cases, the lower the benefits

of T-Norm. Considering this, it is in order to warn that the T-Norm cohort in this Thesis has

been selected from the same Guardia Civil database that has been used to simulate real forensic

latent-exemplar fingerprint comparisons, and therefore the results can be optimistic. Another

disadvantage of T-Norm is that it implies the generation of an additional number of comparisons

equal to the size of the cohort, and therefore it increases the computational burden of each query.

7.2.3. Likelihood Ratio models

From the analysis performed above, in this Thesis we proposed 4 models for likelihood ratio

computation.

Pool Adjacent Violators (PAV) calibration applied to scores from fingerprint matchers

directly (namely PAV ).

1A cohort size of minimum of 50 fingerprints is typically recommended [Auckenthaler et al., 2000].
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Pool Adjacent Violators calibration applied to scores after T-Norm score normalization

(namely T-Norm + PAV ).

Gaussian-ML density models applied to scores after T-Norm score normalization (namely

T-Norm + Gaussian-ML).

Logistic regression applied to scores after T-Norm score normalization (namely T-Norm

+ LR).

7.3. Experimental results

7.3.1. Experimental protocol

The experimental protocol has been designed in order to simulate a real forensic scenario

where latent fingerprints are compared with exemplar fingerprints using typical minutia fea-

tures and also rare minutia features. In our experiments, we used the Guardia Civil database

(as described in Section 5.1), because it is the only forensic fingerprint database which contains

rare minutiae, as it has been previously described. Since the GCDB is limited in size, a cross-

validation strategy has been followed in order to optimally use the data without using the same

dataset to train and test the LR models proposed. This cross-validation strategy is described as

follows: for each genuine comparison of a latent fingerprint and a mated exemplar fingerprint,

the scores to train the LR model for that particular comparison will consist of all the scores

generated with the GCDB, except those generated with either the latent or the exemplar finger-

print involved in the case. Therefore, we guarantee separation between the latent and exemplar

fingerprint sources and the individuals in the training database.

This cross-validation strategy has many advantages in the sense of the optimal usage of the

available database. However, it also presents the disadvantage that the conditions of the train-

ing scores matches the conditions of the latent and exemplar fingerprint under comparison to a

higher degree than in a potential real case. Thus, the results presented here could be optimistic.

However, due to the limitation of the database, and also because the aim of the work is to show

how to apply the methodology and to illustrate the improvements due to rare minutiae, we

consider it appropriate to use this protocol.

Notice that this cross-validation strategy not only guarantees that the identities in the latent

and exemplar fingerprints in the training and testing databases are not the same. Moreover,

it also guarantees that the T-Norm scores generated with the cohort are not present in the

training database. This is because the T-Norm cohort scores must be generated with the scores

of the query latent fingerprint, which will be not present in the training database. Therefore,

the situation is realistic in the sense of the handling of the data to normalize the scores and also

to train the LR models.
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7.3.2. Results on the effects of T-Norm

In this section, results are shown in order to confirm the hypothesis that T-Norm is useful

for likelihood ratio computation. Thus, in this section the MCC systems without T-Norm will

be used as baseline, whereas the MCC systems with T-Norm are the proposed improvements.

As only PAV LR computation method makes sense without T-Norm, we will only use this LR

method, and we compare it with other methods in the next sections.

Figure 7.6 shows the ECE plots of the LR values computed for the PAV method before and

after T-Norm, for all the four categories presented with MCC. It is observed that a significant

improvement in the discriminating power (reduction in the blue dashed curve) has been intro-

duced by the use of T-Norm in all cases.

There are two explanations for the nice improvement introduced by T-Norm. The first one

related to the misalignment between the different latent fingerprint queries. This can be ob-

served in Figure 7.7, where scores are represented for each query, before and after T-Norm, for

the MCC-Automatic system. It is clearly shown that the scores are misaligned for different

queries if T-Norm is not applied. After T-Norm, the alignment of the impostor scores improves

severely. The second explanation is the gaussianization of the histogram of scores when they are

pooled together for all queries. Figure 7.8 shows this also for the MCC-Automatic system: it is

clearly seen that before T-Norm the histogram looks multimodal, and after T-Norm it adopts a

form that can be associated much better to a gaussian pdf, especially for the impostor scores.

This Gaussianization of the scores allows models like Gaussian-ML and logistic regression to

better model the scores, and therefore the calibration performance is expected to improve for

those models. In fact, without such a T-Norm Gaussianization of scores, Gaussian-ML and

logistic regression must present a much worse performance, and we have not considered them.

Interestingly, it is important to notice that T-Norm does not change the CMC characteristic

of the matcher by definition, as previously said. Consequently the performance in identification

mode is the same with and without T-Norm. Because of this, it can be thought that, because

of the nice properties of T-Norm regarding discriminating power and also for likelihood ratio

computation, T-Norm should be used as a recommended stage in all AFIS systems. However, if

identification mode is to be used, and computational efficiency is critical, then T-Norm should

be suppressed, since it means some computational burden for each query comparison with no

CMC performance improvement.

Due to the nice properties of T-Norm for finger-generic likelihood ratio computation, we will

use it in all the subsequent experiment in this chapter.
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Figure 7.6: ECE plots showing performance of PAV calibration method before T-Norm (left) and after

T-Norm (right), for MCC-Automatic (a), MCC-Manual (b), MCC-Typical+Rare (c) and MCC-Typical

(d).
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Figure 7.7: Per-query representation of the scores of the MCC-Automatic system. Red crosses are

always impostor scores and blue circles are genuine scores. X-axis represent the score value, and y axis is

discrete and represent the index of each of the latent fingerprint queries. Thus, in each row of the graph

the genuine and impostor scores of a single query are represented. Black asterisks indicate the threshold of

the Equal Error Rate for each query ( row). Scores without T-Norm are in (a), and scores after T-Norm

are in (b).
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Figure 7.8: Histograms of scores of the MCC-Automatic system. Scores without T-Norm are in (a),

and scores after T-Norm are in (b).
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7.3.3. Results on the improvement due to rare minutiae

In this section we compare the improvement in the performance of all the proposed likeli-

hood ratio computation methods with T-Norm, due to the inclusion of rare minutiae. Again, as

previously addressed, we will use the MCC-Typical system as the baseline, because it does not

include rare minutiae information. Also, we will present the MCC-Manual as the ceiling of per-

formance when rare minutiae are considered. Finally, MCC-Automatic and MCC-Typical+Rare

are considered here as the proposed systems. Moreover, we will show the improvement intro-

duced by the use of rare minutiae for all the methods proposed with T-Norm, namely PAV,

Gaussian-ML and logistic regression.

Figure 7.9 shows the performance in the form of ECE plots for all the LR methods proposed

and T-Norm scores. The Figure shows the baseline (without rare minutiae) on the left column,

the ceiling (rare minutiae are manually considered) on the right and the proposed systems in

the two central columns.

For all the methods, ECE plots show that the discriminating power (blue dashed line) im-

proves by the inclusion of rare minutiae. It is also seen that the two systems automatically

including rare minutiae approaches the ceiling of discrimination performance for all LR methods.

As a conclusion for this section, it has been shown that all the methods benefit from rare

minutiae in the sense of the discriminating power, confirming the hypothesis throughout this

Thesis.

7.3.4. Results on the comparison of LR computation methods

In this section we compare all the proposed LR computation methods not only from the

perspective of the discriminating power, but also with respect to the calibration loss. Thus,

accuracy as the sum of both performance measure will allow us to select the best choice for LR

computation.

From Figure 7.9, the two central columns are the LR computation methods that are realistic

to be performed automatically, as previously mentioned. From that Figure, it is therefore seen

that the logistic regression model presents the best accuracy (red solid curve) both for MCC-

rare+Typical and MCC-Automatic systems, and therefore this seems to be the best choice.

We now analyze calibration (separation between red and blue curves) more deeply. It is gen-

erally seen in Figure 7.9 that the calibration loss is preserved with the inclusion of rare minutiae

for PAV and logistic regression methods, making both of them apparent good options for LR

computation.
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An additional warning is in order here. The cross-validation procedure to train LR models

and to select T-Norm scores implies a scenario with low dataset shift between training and

testing data. In a forensically realistic set-up, where dataset shift between training and testing

data can be severe, the performance of LR methods that excessively fits the training data can

seriously degrade. On the other hand, it is known in pattern recognition that models with lower

complexity are more robust to this effect to avoid overfitting. Therefore, the much lower com-

plexity of logistic regression with respect to PAV indicates that the former can be potentially

more robust to overfitting and dataset shift than the latter in forensically realistic conditions.

Due to this reason, logistic regression is more preferable to PAV computation method.

Regarding the Gaussian-ML method, it is seen that the calibration performance is much

worse than for PAV or logistic regression. Moreover, it seriously degrades for MCC-Automatic

scores, being even worse than for the neutral reference. The reason is that, due to the Au-

tomatic process described before to incorporate rare minutiae information to the raw scores,

by means of multiplying a fixed value to the scores, the distribution of scores for each latent

fingerprint query strongly deviates from Gaussianity. Moreover, although T-Norm Gaussian-

izes the impostor distribution of scores when they are pooled among all queries, it is not the

case for the genuine scores, and this makes the genuine pooled distribution to seriously diverge

from Gaussianity even after T-Norm is applied. As a consequence, it is strongly discouraged to

use Gaussian-ML models to compute LR values with MCC-Automatic scores, even after T-Norm.

As a conclusion of this section, the calibration loss represents a low percentage of all the

loss of accuracy for logistic regression and PAV LR computation methods, in this order. This

makes the overall performance of logistic regression superior, which among other reasons makes

it the best choice. On the other hand, Gaussian-ML presents higher calibration loss, sometimes

presenting worse performance than the neutral reference, which makes it not recommendable

for the score computation systems proposed in this Thesis.

7.4. Discussions

In this chapter, we have explored various methods to compute likelihood ratios from the

scores generated by the fingerprint recognition systems studied in this Thesis. This has allowed

the interpretation of the evidence from the latent-to-exemplar fingerprint comparisons simu-

lating a real forensic case by the use of a cross-validation strategy with the GCDB. First, an

analysis of the systems has been done in order to propose the strategies for LR computation.

Then, several models have been proposed and compared in terms of discriminative power and

calibration performance. Those results clearly show the improvement of rare minutiae in the

discrimination performance of the forensic LR methods, where most of them present calibration

performance far better than the neutral reference.

124



Chapter 7. LR framework 7.4 Discussions

−
2

−
1

0
1

2
0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

P
ri
o

r 
lo

g
1

0
(o

d
d

s
)

Empirical cross−entropy
M

C
C

−
T

y
p

ic
a

l 
T

N
o

rm
 C

a
lib

ra
te

d
 P

A
V

 

 

L
R

 v
a

lu
e

s

A
ft

e
r 

P
A

V

L
R

=
1

 a
lw

a
y
s

−
2

−
1

0
1

2
0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

P
ri
o

r 
lo

g
1

0
(o

d
d

s
)

Empirical cross−entropy

M
C

C
−

T
y
p

ic
a

l+
R

a
re

 T
N

o
rm

 C
a

lib
ra

te
d

 P
A

V

 

 

L
R

 v
a

lu
e

s

A
ft

e
r 

P
A

V

L
R

=
1

 a
lw

a
y
s

−
2

−
1

0
1

2
0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

P
ri
o

r 
lo

g
1

0
(o

d
d

s
)

Empirical cross−entropy

M
C

C
−

A
u

to
m

a
ti
c
 T

N
o

rm
 C

a
lib

ra
te

d
 P

A
V

 

 

L
R

 v
a

lu
e

s

A
ft

e
r 

P
A

V

L
R

=
1

 a
lw

a
y
s

−
2

−
1

0
1

2
0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

P
ri
o

r 
lo

g
1

0
(o

d
d

s
)

Empirical cross−entropy

M
C

C
−

M
a

n
u

a
l 
T

N
o

rm
 C

a
lib

ra
te

d
 P

A
V

 

 

L
R

 v
a

lu
e

s

A
ft

e
r 

P
A

V

L
R

=
1

 a
lw

a
y
s

(a
)

−
2

−
1

0
1

2
0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

P
ri
o

r 
lo

g
1

0
(o

d
d

s
)

Empirical cross−entropy

M
C

C
−

T
y
p

ic
a

l 
T

N
o

rm
 C

a
lib

ra
te

d
 G

a
u

s
s
ia

n
 M

L

 

 

L
R

 v
a

lu
e

s

A
ft

e
r 

P
A

V

L
R

=
1

 a
lw

a
y
s

−
2

−
1

0
1

2
0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

P
ri
o

r 
lo

g
1

0
(o

d
d

s
)

Empirical cross−entropy

M
C

C
−

T
y
p

ic
a

l+
R

a
re

 T
N

o
rm

 C
a

lib
ra

te
d

 G
a

u
s
s
ia

n
 M

L

 

 

L
R

 v
a

lu
e

s

A
ft

e
r 

P
A

V

L
R

=
1

 a
lw

a
y
s

−
2

−
1

0
1

2
0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

P
ri
o

r 
lo

g
1

0
(o

d
d

s
)

Empirical cross−entropy

M
C

C
 A

u
to

m
a

ti
c
 T

N
o

rm
 C

a
lib

ra
te

d
 G

a
u

s
s
ia

n
 M

L

 

 

L
R

 v
a

lu
e

s

A
ft

e
r 

P
A

V

L
R

=
1

 a
lw

a
y
s

−
2

−
1

0
1

2
0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

P
ri
o

r 
lo

g
1

0
(o

d
d

s
)

Empirical cross−entropy

M
C

C
−

M
a

n
u

a
l 
T

N
o

rm
 C

a
lib

ra
te

d
 G

a
u

s
s
ia

n
 M

L

 

 

L
R

 v
a

lu
e

s

A
ft

e
r 

P
A

V

L
R

=
1

 a
lw

a
y
s

(b
)

−
2

−
1

0
1

2
0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

P
ri
o

r 
lo

g
1

0
(o

d
d

s
)

Empirical cross−entropy

M
C

C
−

T
y
p

ic
a

l 
T

N
o

rm
 C

a
lib

ra
te

d
 L

o
g

is
ti
c
 R

e
g

re
s
s
io

n

 

 

L
R

 v
a

lu
e

s

A
ft

e
r 

P
A

V

L
R

=
1

 a
lw

a
y
s

−
2

−
1

0
1

2
0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

P
ri
o

r 
lo

g
1

0
(o

d
d

s
)

Empirical cross−entropy

M
C

C
−

T
y
p

ic
a

l+
R

a
re

 T
N

o
rm

 C
a

lib
ra

te
d

 L
o

g
is

ti
c
 R

e
g

re
s
s
io

n

 

 

L
R

 v
a

lu
e

s

A
ft

e
r 

P
A

V

L
R

=
1

 a
lw

a
y
s

−
2

−
1

0
1

2
0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

P
ri
o

r 
lo

g
1

0
(o

d
d

s
)

Empirical cross−entropy

M
C

C
−

A
u

to
m

a
ti
c
 T

N
o

rm
 C

a
lib

ra
te

d
 L

o
g

is
ti
c
 R

e
g

re
s
s
io

n

 

 

L
R

 v
a

lu
e

s

A
ft

e
r 

P
A

V

L
R

=
1

 a
lw

a
y
s

−
2

−
1

0
1

2
0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

P
ri
o

r 
lo

g
1

0
(o

d
d

s
)

Empirical cross−entropy

M
C

C
−

M
a

n
u

a
l 
T

N
o

rm
 C

a
lib

ra
te

d
 L

o
g

is
ti
c
 R

e
g

re
s
s
io

n

 

 

L
R

 v
a

lu
e

s

A
ft

e
r 

P
A

V

L
R

=
1

 a
lw

a
y
s

(c
)

F
ig
u
re

7
.9
:

E
C

E
p
lo

ts
sh

o
w

in
g

pe
rf

o
rm

a
n

ce
o
f

L
R

m
et

h
od

s
w

it
h

T
-N

o
rm

sc
o
re

s.
F

ro
m

le
ft

to
ri

gh
t:

T
y
p

ic
a
l

(b
a
se

li
n

e)
,

T
y
p

ic
a
l+

R
a
re

,A
u

to
m

a
ti

c

a
n

d
M

an
u

al
(C

ei
li

n
g)

.
T

h
e

d
iff

er
en

t
L

R
m

et
h
od

s
a
re

P
A

V
(a

),
G

u
a
ss

ia
n

-M
L

(b
)

a
n

d
L

og
is

ti
c

R
eg

re
ss

io
n

(c
).

125



Chapter 7. LR framework

The main conclusion of this chapter is that AFIS technology scores are appropriate to gen-

erate a candidate list for database search in forensic investigation. However, they cannot be

directly used in order to compute likelihood ratios by using standard methods in the continuous

score domain. The main reasons for this are as follows:

Scores from fingerprint recognition systems might present distributions that do not resem-

ble typical parametric probability density functions. Moreover, an important proportion

of the scores generated by the systems (both genuine an impostor) might be concentrated

into a single value (or a small range of values, like zero, in the case of some of the sys-

tems analyzed in this thesis). Therefore, the direct use of standard algorithms like kernel

density functions, Gaussian modeling or logistic regression will lead to seriously degraded

performance.

Scores from fingerprint recognition systems can present a very good CMC performance, but

the misalignment between scores for each latent fingerprint query can be severe. Therefore,

if LR computation is computed from a pool of training scores from different queries (as it

is the case in this Thesis), this will lead to a dramatic degradation in the discriminating

power.

Some solutions to these problems explored in this Thesis are described below:

Non-parametric techniques like PAV have been used in order to tackle the problem with

the distributions of the scores, and even the concentration of the scores in particular values.

Score normalization has been used in order to correct the misalignment of the scores from

different queries.

The selected score normalization technique, namely T-Norm, has the property of Gaus-

sianizing the distribution of the scores pooled for all latent fingerprint queries. Therefore,

this allows the use of parametric techniques like Gaussian models or logistic regression,

the latter outperforming the rest of LR methods proposed.
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Chapter 8

Conclusions and Future Work

We have addressed some of the challenges in the current state-of-the-art of automated latent

fingerprint matching, and towards individualization of latent fingerprints. After providing a

summary of the state-of-the-art in latent fingerprint matching, we present algorithms and mod-

els to improve the rank identification accuracies of minutiae-based matchers by proposing an

algorithm to perform pre-registration of partial latent fingerprints, and by proposing a model

to incorporate reliably extracted rare minutiae features. We experimentally demonstrate the

significant improvement in the rank identification accuracies of minutiae-based matchers when

using our proposed algorithm, as well as the feasibility of our algorithm as a fully automatic

tool. From the model proposed for incorporating rare minutiae features, we also studies various

evidence evaluation models based on likelihood ratio.

8.1. Conclusions

Chapter 1 introduces about various types of forensic evidences generally involved in the

forensic sciences. This is followed by an overview of the latent fingerprints, types of testimony

standards to be followed for general acceptance of the evidence in courts (Frye and Daubert),

an overview of the current practices in friction ridge analysis, the challenges faced in the indi-

vidualization of fingerprints, and about the use of newer technologies to reduce human-errors

in the examination process. We discuss the main recommendations put forward by the forensic

community to improve the friction ridges analysis, followed by the motivation of this Thesis,

and the research contributions originated from this Thesis.

Chapter 2 gives an overview about automated latent fingerprint matching systems, and its

drawbacks in forensic applications. We reviewed about different types of fingerprint matching

techniques currently employed by automated fingerprint matchers, and also the importance of

alignment as an important pre-processing stage in matching for improved performance. We

reviewed about various alignment techniques, and their limitations to be used in partial to
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Chapter 8. Conclusions and Future Work

full fingerprint alignment. We then discussed about the discriminating ability of orientation

fields in fingerprints, and how they are robust against fingerprint image quality. An overview of

the proposed orientation field based partial fingerprint registration was given together with the

database used in the analysis for pre-registration algorithm.

Chapter 3 described in details the hierarchical algorithm to register the orientation field of

partial fingerprint into the orientation field of full fingerprint. Through pre-registration, we were

able to reduce the minutiae search space of the full fingerprint approximately to the size of the

partial fingerprint minutiae set which contributed towards significant improvement in the rank

identification accuracies of the minutiae-based matchers. Through these experiments of pre-

registration, we were also able to study from various orientation field estimation techniques, the

best representative orientation fields for both tenprint and latent fingerprints. We also observed

that for a large quantization step in the rotation alignment, we have not degraded the perfor-

mance very much, and while matching, we have reduced the size of the minutiae search space in

the tenprint to good extent which accounts for overall efficiency of our proposed method. Also,

we have established the feasibility of our method as a fully automatic tool.

Chapter 4 described the importance of Extended Feature Sets (EFS) towards improving the

identification accuracies of minutiae-based fingerprint matchers, and details about the real foren-

sic fingerprint casework database obtained from Guardia Civil which consists of rare minutiae

features. Chapter 5 described in details the proposed algorithm to improve the identification

accuracy of minutiae-based matchers for partial latent fingerprints by incorporating reliably ex-

tracted rare minutiae features. The improvement in the identification accuracy for matchers

are achieved by modifying the similarity scores of matcher based on the decision yielded by our

algorithm. The decision for a match or non-match was automatically estimated based on least

squares fitting error of an affine transformation that transforms latent minutiae set onto tenprint

minutiae set with the rare minutiae as the reference point. The usefulness of the proposed model

is demonstrated on two widely used minutiae-based matchers, NIST-Bozorth3 and VeriFinger.

Both matchers showed significant improvements in the rank identification accuracies when their

similarity scores were modified based on the fitting error proposed in our methodology. We con-

clude that even if we have only few number of minutiae in a partial latent, presence of reliably

extracted rare minutiae features makes the comparison more robust.

Chapter 6 addressed the issue of interpretation of forensic evidence from scores generated by

biometric systems. We described the importance of evidence evaluation, and addressed it using

the method previously developed for generating the modified similarity scores based on rare

minutiae features. In Chapter 7, we showed that though AFIS scores can be directly appropri-

ate to generate a ranked list of candidates from the database, but they cannot be used directly

for evidence evaluation. Score normalization has been used in order to correct the misalignment

of the scores from different queries. We experimentally demonstrated that the selected score
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normalization technique, namely T-Norm, allows the use of parametric techniques like Gaussian

models or logistic regression, the latter outperforming the rest of LR methods proposed.

Summarizing, the main results and contributions obtained from this Thesis are:

New correlation-based hierarchical registration method for orientation images to register

a partial fingerprint in a full fingerprint.

The best representative orientation fields for both full fingerprint and partial fingerprint

have been experimentally demonstrated.

A methodology to adapt any minutiae-based matcher by incorporating information from

rare minutiae features.

A specific algorithm to align the latent minutiae pattern and the tenprint minutiae pattern

using rare minutiae features.

Presenting population statistics about rare minutiae features present in a realistic forensic

fingerprint casework database.

Selection of normalization techniques to correct the misalignment of the similarity scores

generated by fingerprint matchers from different queries.

8.2. Future Work

A number of research lines arise from the work conducted in this Thesis. We consider of

special interest the following ones:

The thesis has considered the use of dictionary based orientation estimation technique in

which the orientations are corrected on a global level. A possible improvement to the

latent orientation field estimation will be to use localized dictionary based orientation

field for latents [Yang et al., 2014], and see the overall improvement in the performance of

minutiae-based matchers.

More robust orientation image comparison methodology which not only emphasis on ori-

entation of fingerprint image, but also takes into account the quality of the fingerprint

image for each block of the orientation estimated from the gray scale fingerprint image.

Developing techniques to automatically estimate rare minutiae features from high reso-

lution fingerprint image will be a useful addition to the system developed for extended

feature sets in this Thesis.

The entropy-based measure estimated from the probabilities of the rare-minutiae features

were used to reward the similarity score of the minutiae-based matcher. Other techniques

can be used to obtain the weights to penalize the score.
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Generate models more adapted to the casuistic of AFIS scores, in order to obtain improved

performance. Some previous work on this topic can be found in [Haraksim et al., 2015b].

Apply Bayesian methods to evidence evaluation in order to obtain more robust and co-

herent LR values. Some previous work on this can be found in [Brummer and Swart,

2014].

Generate or simulate databases in order to address more specific propositions that can

more realistically reflect the typical forensic practice.
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Appendix A

Conclusiones y Trabajo Futuro

En este trabajo se han abordado retos importantes dentro del estado-del-arte del reconocimien-

to automático de huellas latentes. Después de resumir el estado-del-arte en reconocimiento de

huella latente, se han presentado algoritmos y modelos para mejorar las métricas de rendimiento

de sistemas basados en comparación de minucias. Los algoritmos propuestos se basan en modelos

de pre-alineamiento de huellas y metodoloǵıas para incorporar minucias de baja probabilidad

de aparición (rare minutiae en inglés). Se ha demostrado experimentalmente la conveniencia de

las técnicas propuestas aśı como su integración en sistemas automáticos. Adicionalmente se han

estudiado varios modelos de verosimilitud para incorporar las minucias de baja frecuencia de

aparición como evidencia pericial en cotejo de huellas.

A.1. Conclusiones

En el Caṕıtulo 1 se han introducido diferentes tipos de evidencias habitualmente utilizadas

en la ciencia forense. A continuación se ha realizado un resumen sobre la utilidad de las huel-

las latentes, tipos de testimonios más populares y comúnmente aceptados en cortes penales,

técnicas más comunes en la comparación de huellas basadas en patrones de cresta, retos en

la individualización de huellas y uso de nuevas tecnoloǵıas para reducir las tasas de errores

humanas. Se han discutido las principales recomendaciones de la comunidad forense para mejo-

rar el cotejo de huellas para finalmente presentar las motivaciones y contribuciones de esta Tesis.

El Caṕıtulo 2 presenta una visión de los sistemas automáticos de comparación de huellas dac-

tilares y su utilidad en escenarios forenses. Se evalúan las técnicas más populares de comparación

del estado del arte y se analiza la importancia del alineamiento como fase previa para mejorar

las métricas de rendimiento. Seguidamente se evalúan diferentes técnicas de alineamiento.

El Caṕıtulo 3 describe en detalle los algoritmos de alineamiento del mapa de orientación

de huellas latentes propuestos. A través del alineamiento se reduce el espacio de búsqueda de

coincidencias entre minucias a un tamaño similar al de la huella latente parcial. Esta disminu-
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ción del espacio de búsqueda permite eliminar gran cantidad de falsos positivos y mejorar aśı el

rendimiento de los sistemas de comparación basados en minucias. A través de estos experimentos

de alineamiento de mapas de orientación, también se ha estudiado la mejor forma de representar

mapas de orientación de huellas latentes y sus respectivas impresiones. También se ha probado

la integración de nuestro método en herramientas de cotejo completamente automáticas.

El Caṕıtulo 4 describe la importancia de los conjuntos extendidos de caracteŕısticas (EFS en

inglés) para la mejora de algoritmos de comparación de minucias y se presenta la base de datos

de casos forenses reales cedida por la Guardia Civil para la evaluación de los modelos propuestos

en esta Tesis. El Caṕıtulo 5 describe en detalle la metodoloǵıa propuesta para incorporar las

minucias de baja probabilidad de aparición para la mejora del rendimiento de comparadores

automáticos. La mejora en el rendimiento se obtiene a través de la ponderación a través del

algoritmo propuesto de los valores de similitud del clasificador. La decisión de coincidencia o

no coincidencia se realiza a través de un ajuste automático del error de la transformación af́ın

entre diferentes conjuntos de caracteŕısticas. La utilidad de la metodoloǵıa se demuestra a partir

de dos sistemas populares de comparación de minucias, NIST-Bozorth3 y VeriFinger. Ambos

sistemas muestran una clara mejora cuando se aplica la metodoloǵıa propuesta incluso cuando

el conjunto de minucias de baja probabilidad de aparición es pequeño.

El Caṕıtulo 6 aborda la interpretación de la evidencia forense a partir de valores de similitud

generados con un sistema de reconocimiento biométrico. Se describe la importancia de la eval-

uación de la evidencia, y se analiza la metodoloǵıa propuesta anteriormente. En el Caṕıtulo 7

se muestra cómo los valores de similitud de un sistema de reconocimiento automático de huella

dactilar pueden ser utilizados para generar una lista de candidatos pero no pueden ser usados

directamente como evidencia forense. Se propone la normalización de resultados basados en T-

norm para corregir errores de alineamiento de las distribuciones de similitud.

En resumen, los principales resultados y contribuciones obtenidos durante el desarrollo de

esta Tesis son:

Nueva metodoloǵıa de alineamiento de huellas latentes basada en correlaciones jerárquicas.

Se ha demostrado experimentalmente su utilidad tanto para huellas latentes completas

como parciales.

Metodoloǵıa para incorporar minucias de baja probabilidad de aparición en comparadores

automáticos de minucias.

Algoritmos de alineamiento de patrones de minucias usando minucias de baja probabilidad

de aparición.

Estad́ısticas poblaciones relacionadas con las minucias de baja probabilidad de aparición

en bases de datos forenses relativas a casos reales.
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Técnicas de normalización para corregir des-alineamiento en las distribuciones de valores

de similitud de comparadores de huellas dactilares.

A.2. Trabajo futuro

Existen múltiples v́ıas para continuar el trabajo presentado en esta Tesis. Consideramos de

especial interés las siguientes:

Mejora de los mapas de orientaciones a través de nuevas técnicas de aprendizaje automático

basadas en el uso de diccionarios [Yang et al., 2014]. Estos mapas mejorados podrán ser

utilizados para mejorar el pre-alineamiento y por tanto el rendimiento de los sistemas.

Técnicas más robustas de comparación de mapas de orientación que incorporen carac-

teŕısticas como la calidad de la huella en cada bloque de orientación estimado de la imagen

en escala de grises.

Desarrollo de técnicas de detección automáticas de minucias de baja probabilidad de apari-

ción a partir de imágenes de alta resolución.

Generación de modelos adaptados a la casúıstica de los sistemas de comparación au-

tomática de huellas que puedan mejorar las métricas de rendimiento. Un trabajo en esta

ĺınea es [Haraksim et al., 2015b].

Aplicaciones de modelos Bayesianos para la evaluación de la evidencia que permitan mejo-

rar la robustez de los valores de verosimilitud. Un trabajo en esta ĺınea es [Brummer and

Swart, 2014].

Generación de bases de datos que reflejen mejor la realidad de las prácticas forenses.
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