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Abstract: Iron deposition in the brain has been observed with normal aging and is associated 
with neurodegenerative diseases. The automated classification of brain magnetic resonance 
images (MRI) based on iron deposition in Basal Ganglia region of the brain has not been 
performed, to our knowledge. It is very difficult to analyse iron regions in brain using simple 
MRI techniques. The MRI sequence namely susceptibility weighted imaging (SWI) helps to 
distinguish brain iron regions. The objective of our work is to investigate the iron regions in 
selected areas of basal ganglia region of brain and classify MR images. The study included a total 
of 60 MRI images which consists of 40 subjects with iron region and 20 subjects of healthy 
controls. We performed Gaussian smoothing followed by construction of 40 localised patches of 
each MR image based on iron and normal regions. Grey level co-occurrence matrix (GLCM) 
features are extracted from the patches and fed to random forest (RF) classifier for patch-based 
classification of iron region. Training of data patch features was done by random forest classifier 
and the performance of classifier in terms of accuracy was measured. The experimental results 
show that the proposed localised patch-based approach for classification of brain iron images 
using random forest classifier achieved 96.25% classification accuracy in identifying normal and 
iron regions from brain MR sequences. 
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1 Introduction 
Iron is deposited in the form of hemosiderin in many 
regions of brain which leads to human cognitive ageing 
(Valdes Hernandez et al., 2015). Neurodegeneration with 
accumulation of brain iron leads to neurodegenerative 
diseases (Kruer et al., 2012). Increased quantity of iron in 
brain has been related to chronic brain disorders like 
Alzheimer’s disease, movement disorders particularly 
Parkinson’s disease and dystonia, multiple sclerosis, 
cognitive dysfunction, retinal abnormalities and other 
disorders (Hossein Sadrzadeh and Saffari, 2004; 
Stankiewicz et al., 2007; Araujo Salomao et al., 2016). 
Excessive iron in the brain results in oxidative stress and 
neuronal dysfunction as well as death (Batista-Nascimento 
et al., 2012). Schipper (2012) relates seven disorders of 
neurodegeneration with brain iron accumulation (NBIA) 
with strong emphasis on neuroimaging. Gregory and 
Hayflick (2004) suggest that NBIA targets various  
types of disorders related to neurodegeneration diseases. 
Neuroferritinopathy is a neurodegenerative disorder which 
is related to brain iron accumulation. The actual cause of 
Neuroferritinopathy is mutation in ferritin light chain gene 
(Ohta and Takiyama, 2012). 

Thomas et al. (1993) found that there is age-related 
deposition of iron in five regions of brain (substantia nigra, 
putamen, red nucleus, dendate nucleus and caudate) from 
T2-weighted MRI spin-echo images. Magnetic resonance 
imaging (MRI) studies shows that in most forms of NBIA, 
the iron deposition mainly occurs in the crucial brain  
 
 
 

regions of basal ganglia (Kruer and Boddaert, 2012) such as 
globus pallidus (Kruer, 2013), putamen and caudate (Yan  
et al., 2012). Lanciego et al. (2012) has shown that globus 
pallidus, putamen and caudate are categorised under basal 
ganglia and related nuclei. Susceptibility weighted imaging 
(SWI) is a neuroimaging technique in which the differences 
in magnetic susceptibility of tissues are used in the 
enhancement of contrast of MRI (Haacke et al., 2009, 
2004). Sheelakumari et al. (2017) has performed a 
quantitative analysis of iron content in the MR sequence 
namely SWI. The work reveals a potential biomarker for 
frontotemporal dementia. The identification of iron content 
in brain facilitates efforts to provide treatments for the 
associated neurodegenerative diseases. 

In the proposed work, a new local patch-based approach 
is introduced to perform feature extraction in the brain SWI 
sequences. Ensemble learning techniques are used to 
identify and classify the iron regions in brain. 

2 Related works 
Recently, the quantification of iron in MRI brain images is a 
hot research point. The identification and classification of 
iron content in brain using automated techniques is not yet 
fully developed. A survey on various stages involved in the 
automated detection and classification of brain tumour areas 
namely feature extraction, segmentation and classification is 
discussed in this section. 
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2.1 Feature extraction 
A prominent attribute of an image is the texture of an 
image. Udayabhanu et al. (2016) suggests that the  
statistical method of examining the textures is grey level  
co-occurrence matrix (GLCM) and it considers spatial 
relationship between the pixels. 

2.2 Segmentation 
Vijay et al. (2016) has proposed the enhanced Darwinian 
particle swarm optimisation (EDPSO) technique for 
identification and segmentation of regions of tumour in 
MRI. EDPSO particles find an optimal solution in search 
space by computing the best neighbourhood. 

2.3 Classification 
Zacharakia et al. (2006) introduces a recursive feature 
elimination (RFE) approach in support vector machine 
(SVM) to determine a subset of attributes using backward 
sequential selection method and optimises the performance 
of the classifier. Zhang et al. (2015) has proposed an 
automated classification method based on eigenbrains and 
SVM technique to detect Alzheimer’s disease related brain 
regions in 3D MR images. 

3 Dataset 
OASIS-3 dataset (Oasis Brains Datasets, http://www.oasis-
brains.org.) is used for the implementation of the proposed 
work. The slices include axial view of susceptibility 
weighted images of 3.0 Tesla MR Sessions obtained using 
Siemens TIM Trio 3T MRI Scanner. The brain image 
subjects includes 60 cases both men and women aged 60 to 
80 with 40 iron subjects and 20 healthy controls. The iron 
regions in three main parts of basal ganglia namely globus 
pallidus, putamen and caudate were analysed in this study. 
Finally, the iron regions in each image were outlined with 
the help of experienced radiologist. The outlined images are 
considered to be the ground truth. All experiments were 
conducted using Scikit Learn version 0.20 and Scikit Image 
version 0.14.1 under Python version 3.6.7. 

4 Proposed work 
Figure 1 illustrates the steps of our proposed work. 

The proposed work for identification and classification 
of iron regions in brain comprises of the fundamental stages 
such as region of interest (ROI) selection, construction of 
local patches, and extraction of features and classification. 
We propose a novel patch-based approach using robust 
classification techniques to identify and classify iron regions 
in brain MRI. 

 

 

Figure 1 Flowchart of the proposed work 

 

 

 

 

 

 

 

 

 

 

4.1 ROI selection 
The regions of interest of brain MRI include three main 
parts of basal ganglia namely globus pallidus, putamen and 
caudate. The SWI image slices showing theses regions are 
selected for image manipulations. All the original images 
are available in RGB format. Initially, the RGB images are 
converted into grey scale images. SWI Images are usually 
prone to Gaussian and Rician noise. The Gaussian 
smoothing is performed on the grey scale image by applying 
Gaussian function which filters the noise in the image. The 
iron content in the three regions under consideration is 
analysed with the help of an expert radiologist and the 
images are considered to be the ground truth. Figure 2 
shows the main parts of basal ganglia used in this work. 

Figure 2 Manual selection of ROI – (1) caudate, (2) putamen 
and (3) globus pallidus regions of basal ganglia in SWI 
brain image (see online version for colours) 
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4.2 Construction of local patches 
Based on the ROI, iron regions and normal regions in the 
selected parts of basal ganglia are identified. For each 
subject, 20 core pixels each from iron and normal regions 
are extracted. A 21 × 21 patch is constructed for the selected 
20 pixels of iron region and 20 pixels of normal region. 
From Figure 3, it is clear that most of the nearby patches 
overlap with each other. From the selected pixels, a total of 
40 patches are constructed which includes 20 patches for 
iron regions and 20 patches for normal regions for each 
image as shown in Figures 4 and 5. The 21 × 21 patches are 
constructed with the identified core pixel as the centre of a 
given image patch. For iron classification from brain SWI, 
the iron pixels are recognised from the localisation of the 
central pixel in a particular patch. These localised patches 
combined with feature extraction techniques are used to 
train the classifier. 

Figure 3 Axial view of SWI image showing 21 × 21 patches for 
selected iron and normal regions in brain image  
(see online version for colours) 

 

Figure 4 Enlarged view of 21 × 21 patches of iron regions  
(1 to 20 patches) 

 

Figure 5 Enlarged view of 21 × 21 patches of normal regions  
(1 to 20 patches) 

 

4.3 Extraction of features 
The feature extraction is performed based on GLCM. The 
GLCM features namely dissimilarity, correlation, contrast, 
homogeneity, angular second moment (ASM) and energy 
are extracted from the localised patches of iron and normal 
regions. 

The statistical analysis of texture in brain images 
comprises of determining the patch-based features from the 
intensity variations in iron regions and normal regions. Thus 
a total of 240 image features are extracted from 40 patches 
based on the six GLCM features for each image. 

The number of rows and columns in the matrix 
determine the size of the GLCM matrix. The variations in 
intensity levels (i and j) at distance d for an angle θ are 

deployed for the calculation of GLCM features (Haralick  
et al., 1993; Wilson and Dhas, 2016). 

a Dissimilarity 

The dissimilarity weights increases linearly from the 
diagonal and is represented as, 
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b Correlation 

The correlation of an image is the measure of linear 
dependency of grey levels of the pixel positions. It is 
represented as, 
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c Contrast 

The local intensity variation is the measure of contrast 
which increases with weight values. The diagonal 
values on GLCM show no contrast, and contrast 
increases away from GLCM diagonal values. 
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d Homogeneity or inverse difference moment (IDM) 

The homogeneity has a greater impact on the IDM. The 
weight associated with homogeneity is influenced by 
regions which are inhomogeneous. This results in a low 
IDM value for images which are not homogeneous and 
high value for other images. 
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e Angular second moment 

The estimation of homogeneity in an image is described 
by ASM. A homogeneous group of pixels consists of 
small number of grey levels, resulting in a GLCM with 
less grey levels but high values of G(i, j). This implies 
that the sum of squares will be high. 
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f Energy 

Energy is the texture measure obtained by determining 
the square root of the ASM values. It is represented as 
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Discriminative textural features in local patches thus 
obtained are used for training the classifier. 
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4.4 Classification 
The main role of machine learning includes classification 
problems and is widely used in many applications in the last 
few years. In our proposed system, the iron dependent 
features are determined using the local patch-based 
extraction of features. The features that are extracted are 
then trained using various classifiers in machine learning 
such as logistic regression (LR), linear SVM, kernel SVM 
(radial basis function), decision tree and ensemble learning-
based random forest classifier. 

a Logistic regression 

LR (Perez Ortiz et al., 2016) is technique which is 
widely used in statistical modelling. In this technique, 
an approximation method is adopted by which the 
likelihood that an object ‘s’ is in class ‘X’ is determined 
by considering one particular class as the pivot class. 

b Linear SVM 

Kotsiantis et al. (2006) introduces that SVM is one of 
the modern machine learning techniques based on 
supervised classification. In SVM, a margin is used to 
separate two classes of different patterns. The main aim 
of the SVM is to maximise the margin so as to increase 
the gap between the hyper planes (Perez Ortiz et al., 
2016). 

c Kernel SVM (radial basis function) 

In the case of nonlinear boundaries, Kernel functions 
are used along with the SVMs (Perez Ortiz et al., 
2016). A kernel function is related to a nonlinear 
mapping function. Main advantages of kernel SVM are 
that the computation of the model is simplified and it 
enables more accurate decision functions. 

d Decision tree 

Murthy (1998) and Kotsiantis et al. (2006) states that a 
decision tree is generated from a set of training objects. 
A set of attributes along with a class label describes 
each object in the training set. Based on feature values, 
the decision trees classify the instances. A feature is 
represented by a node in the decision tree and branch 
denotes a value of the node. 

e Naive Bayes 

Naive Bayes classifier (NBC) is amongst the most 
popular learning method grouped by similarities, which 
works on the popular Bayes’ theorem of probability to 
build machine learning models particularly for disease 
prediction and document classification. The NBC-based 
classification includes two processes, i.e., the training 
process and the validation process. During the training 
process, the image subjects are categorised as normal 
and abnormal classes (Bustomi et al., 2018). 

f Ensemble learning-based random forest classifier 

Random forest classifier is a machine learning 
techniques which is widely applied in image 

classification (Horning, 2010). In order to calculate the 
response, the results from several models are used in 
this ensemble model-based random forest. In random 
forest method, many decision trees are grown and the 
response is determined from the output of all the 
decision trees. During training process, the probabilities 
for each class at each leaf node are determined for each 
tree (Bosch et al., 2007). The efficiency of the random 
forests depends on how the decision trees are created to 
generate the forest. 

5 Experimental results and discussion 
To validate the performance of the proposed work, 60 MR 
images (slices of SWI axial view) of brain were used in our 
experiment. The manual segmentation was initially done by 
experts on the images which are considered to be the ground 
truth images. Better results were obtained by Gaussian 
smoothing images compared to the original grey scale 
image. Totally 240 features were obtained from the 20 iron 
patches and 20 normal patches for each image based on the 
six GLCM features. The influence of patch sizes 10 × 10,  
15 × 15 and 21 × 21 were also studied. Based on the 
analysis, optimal results were achieved for patch size  
21 × 21. The histogram analysis of the training data, i.e., 
GLCM features shows varying diversity of values. In 
addition to the six GLCM grey scale features extracted, six 
gradient features are extracted from the MR image by 
applying a discrete differentiation operator called the Sobel 
operator. This operator computes an approximation of the 
gradient of the image intensity function. 

Based on both the extracted grey scale and gradient 
features, the values of αg and αp (weighted coefficients  
of grey scale and gradient operator respectively) were 
empirically computed by performing an exhaustive search 
using Grid search technique. The grid search is performed 
by assigning the values of α from 0.1 to 1 with a step size of 
0.1 for determining optimal values of αg and αp. From  
the exhaustive search conducted through experiments,  
it is evident that the optimal value of αg = 0.3 and αp = 0.7. 
The proposed mathematical model for computation of 
discriminative features (both grey scale and gradient 
features) by assigning appropriate weight values is given 
below: 

( ) [ ]
1

, . ( ) ( )
N

g p g g p p
n

D f f f n f n
=

= + α α  (7) 

where weighted coefficients αg = 0.3 and αp = 0.7; 

fg grey scale features 

fp first order features obtained using Sobel operator 

n represents the patch in the template patch library. 

The analysis of optimal value for the weighted coefficients 
of grey scale and gradient features was performed using six 
state of the art machine learning classifiers. From Table 1, it 
is evident that the maximum value for classification 
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accuracy is obtained with αg = 0.3 and αp = 0.7. The peak 
value of classification accuracy is obtained for the proposed 
machine learning-based classification model. 

Table 1 Comparison of classification accuracy of various 
machine learning methods based on the optimal 
values of αg and αp (weighted coefficients of grey 
scale and gradient operator respectively) computed 
using grid search technique 

Method used 

Classification accuracy 

With  
αg = 0.4 

With  
αg = 0.3 

With  
αg = 0.2 

αp = 0.6 αp = 0.7 αp = 0.8 

Logistic regression 57.25 66.87 62.50 
Linear SVM 70.30 71.25 63.75 
Kernel SVM (RBF) 81.67 75.62 76.25 
Naive Bayes 83.15 88.75 85 
Decision tree 86.25 93.15 91.35 
Proposed RF 93.50 96.25 92.75 

The ratio of test data to training data was fixed as 20:80. 
The classification accuracy is determined by using the mean 
accuracy on the given test data samples. The classification 
accuracy is the percentage of true predictions made divided 
by the entire number of predictions done. We found that 
random forest classifier outperforms all other classification 
methods. The influence of two important parameters of 
random forest classifier namely number of estimators and 
depth was also performed in this work. A search for the 
optimal estimator value of RF classifier gave significant 
results for score with the estimator value 71. The variation 
of estimators with classification accuracy is illustrated in 
Figure 6. 

Figure 6 Classification accuracy vs. estimators for RF classifier 
(see online version for colours) 

 

Similarly, a search for the optimal depth value of RF 
classifier showed that maximum classification accuracy was 
achieved with depth value 11. Thus the best classification 
score was achieved by the specified optimal depth value. 
The variations of depth with classification accuracy are 
shown in Figure 7. 

Figure 7 Classification accuracy vs. depth values for RF 
classifier (see online version for colours) 

 

6 Conclusions 
The detection of iron region in NBIA is important for the 
evaluation and treatment of iron overload in various 
diseases related to neurodegeneration. A novel technique for 
extraction of features for identification and classification of 
iron region in brain is presented in this paper. The local 
patch-based approach is combined with the feature 
extraction techniques to determine the powerful features 
from the given image. The patch-based features give 
96.25% classification accuracy with robust classifier like 
random forest classifier. 

The results of experiments conducted shows that the 
performance accuracy of classification obtained by 
implementing the proposed features is high compared to 
other state of art classification techniques. In order to 
achieve results of high quality, several issues have been 
addressed. We also describe the method in which we search 
for optimal values for parameters of RF classifier  
namely estimator and depth which is crucial for achieving 
best results. Future enhancement will be focused on 
implementation of efficient texture-based features on a 
larger image dataset. 
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