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Abstract—Comparing a latent fingerprint minutiae set against
a tenprint fingerprint minutiae set using an automated fingerprint
identification system is a challenging problem. This is mainly
because latent fingerprints obtained from crime scenes are
mostly partial fingerprints, and most automated systems expect
approximately the same number of minutiae between query
and the reference fingerprint under comparison for good per-
formance. In this work, we propose a methodology to reduce
the minutiae set of tenprint with respect to that of query
latent minutiae set by registering the orientation field of latent
fingerprint with the tenprint orientation field. By reducing the
search space of minutiae from the tenprint, we can improve
the performance of automated identification systems for latent
fingerprints. We report the performance of our registration
algorithm on the NIST-SD27 database as well as the improvement
in the Rank Identification accuracy of a standard minutiae-based
automated system.

I. INTRODUCTION

Minutiae-based representation is the widely accepted rep-
resentation by many automated fingerprint matching systems.
It is also significant because of its strict analogy with the
forensic friction ridge analysis [1]. The minutia-based decision
is accepted as a proof of identity legally by courts in almost
all countries around the world [2].

Automated Fingerprint Identification Systems (AFIS) in
general assume approximately the same size of minutiae set
between the query and reference minutiae for identification
accuracy [3]. It is nevertheless frequent in some scenarios to
have very different sizes between query and reference.

Partial fingerprints can arise in a number of situations, for
example [3] [4]:

• the unintentional traces of the fingerprint left by the
perpetrator in a crime scene (latent fingerprints are
mostly partial in nature).

• due to small size of the fingerprint captur-
ing/acquisition devices (compact silicon-chip based
sensors).

• an already enrolled/acquired fingerprint has noisy re-
gions and is left only with a partial good/recognizable
region for identification.

The performance of the existing partial fingerprint iden-
tification systems/algorithms mainly depends on the image

quality, the number of minutia available and other derived
and extended features that can be obtained from the partial
fingerprint region. Various approaches in partial fingerprint
identification [4] include the use of localized secondary fea-
tures derived from relative minutia information [3], using rep-
resentative points along ridge lines in addition to minutiae [5]
and use of Level-3 features such as dots and incipients [6].

To improve the performance of AFIS in the partial
fingerprint comparison scenario, it will be advantageous if
we can reduce the minutiae search space of the reference
(full fingerprint) with respect to the query (partial fingerprint)
minutiae set. One methodology that can be adapted to reduce
the minutiae search space of the full fingerprint minutiae set
can be to register the orientation field (OF) of partial fingerprint
with that of the OF of full fingerprint. We then need to perform
minutia comparison only with those minutiae that fall in the
subregion of the full fingerprint where the partial fingerprint
is registered. Such a registration methodology can yield extra
information that can augment minutia-based matching strate-
gies.

In this work, we propose a registration algorithm using
the OF of both partial and full fingerprint solely generated
from their respective minutia sets as proposed in [7], as well
as OF directly estimated from latent and tenprint fingerprint
images using gradient based approach [8]. The work by Feng
and Jain [7] in reconstructing the fingerprint image from
minutia sets alone, and successfully launching attacks against
fingerprint recognition system indicates that the fidelity of the
reconstructed OF to the actual OF is significant. It was also
shown that the performance of the algorithm in reconstructing
the OF did not drop much even when only 60% of minutiae
are only available for OF reconstruction.

The ability to reconstruct OF with only few minutiae
supports the rationale behind using this OF reconstruction
technique to perform pre-registration and generate a subset
of minutiae from the full fingerprint minutiae set before
using the AFIS. This work is an extension of [9], where we
first presented a preliminary correlation based OF registration
method, using only minutiae for OF generation. In the present
work, we also study the effect of OF generated from fingerprint
images, and also use this registration as a pre-registration
stage to improve the rank identification rate of minutiae-based
matcher.



In the following sections, we discuss the database used in
the experiments, the similarity measure used in the registra-
tion, a detailed description of partial fingerprint registration
algorithm, followed by experiments, results, conclusion and
future work.

II. DATABASE

NIST Special Database 27 (NIST-SD27) [10] is a pub-
licly available forensic fingerprint database which provides
minutia sets for latent and its matching tenprint images. The
NIST-SD27 minutia set database is broadly classified into
two [10] [11]: 1) ideal, and 2) matched minutia set database.
The ideal minutia set for latents was manually extracted
by a forensic examiner without any prior knowledge of its
corresponding tenprint image. The ideal minutiae for tenprints
was initially extracted using an AFIS, and then these minutiae
were manually validated by at least two forensic examiners.
The matched minutia set contains those minutiae which are
in common between the latent and its mated tenprint image.
There is a one-to-one correspondence in the minutiae between
the latent and its mate in the matched minutia set. This ground
truth (matched minutia set) was established manually by a
forensic examiner looking at the images and the ideal minutiae.

The NIST-SD27 database consists of latent fingerprints of
varying quality. It already contains a classification of the latent
fingerprints based on the subjective quality of the image into
Good, Bad and Ugly, containing 85, 88 and 85 fingerprints
respectively determined by the forensic examiner. In [12], it
is shown that there is a correlation between these subjective
classification and matching performance.

III. SIMILARITY MEASURE

The space of discrete images of same size taking scalar
values is a vector space [13, Chapter 3]. A vector space which
has a scalar product defined in itself is called a Hilbert space.
Let U and V be discrete images of same size, represented as
a 2D array where the array elements may represent values of
gray pixel (zero-order tensors), color pixel (first-order tensors)
or local directions (second-order tensors).

The Schwarz inequality:

|〈U,V〉|
‖U‖ × ‖V‖

≤ 1 (1)

holds for U and V. Here, 〈U,V〉 is the scalar product between
U and V calculated as :

〈U,V〉 =
∑
r,c

U(r, c)∗ ·V(r, c) (2)

where r, c are the indices, U(r, c)∗ is the complex conjugate
of U(r, c), and ‖U‖ and ‖V‖ are the L2 norms of U and V
respectively.

The L2 norm ‖U‖ is calculated as:

‖U‖ =

[∑
r,c

U(r, c)∗ ·U(r, c)

]1/2

(3)

and similarly for ‖V‖.

The normalized correlation between U and V, referred to
as Schwarz Similarity (SS) hereafter is defined as:

SS(U,V) =
|〈U,V〉|
‖U‖ × ‖V‖

(4)

Because of Eq.(1), the interval for SS is in the range
[0, 1]. By calculating SS as a similarity measure, we can
locate a given pattern (a small image) in a large image. When
SS(U,V) is 1, then both U and V are viewed as most similar
patterns, and when SS(U,V) is 0, they are least similar [13].

IV. ALGORITHM

We present the algorithm of partial fingerprint registration
using the forensic terminologies for the fingerprint. The partial
fingerprint is mentioned as latent, and the full fingerprint is
mentioned as tenprint. The algorithm to register the orientation
field of the latent fingerprint minutia set with that of the
tenprint is detailed as follows:

Step 1: Given a latent minutia set L and a tenprint minutia
set T , reconstruct the orientation field from the minutia using
the algorithm defined in [7]. This orientation field is in the
range [−90,+90] degrees, and can be obtained for 8 × 8 or
16×16 block size. In our experiments, we used 16×16 block
size for the orientation field (see Figs. 1(a), 1(b)). The target
of the registration algorithm is to locate the region depicted
in Fig. 1(c).

Step 2: Generate the orientation tensors for the latent L
and tenprint T in double angle (i.e, in the range [−180,+180]
degrees) using complex numbers, as follows:

L̄ = exp(i× 2× θL)

T̄ = exp(i× 2× θT )
(5)

where i is the complex number
√
−1, θL and θT are the

angles of L and T from Step 1.

The complex field, which depicts the local orientation thus
obtained can be viewed as a field of second-order tensors,
which in turn is a Hilbert Space. We can find the scalar product
between L̄ and T̄s, as follows:

〈L̄, T̄s〉 =
∑
r,c

L̄(r, c)∗ · T̄s(r, c) (6)

where r, c are the indices, L̄(r, c)∗ is the complex conjugate
of L̄(r, c) and T̄s is a subregion of T̄ that is of same size as
L̄ located at a position indexed by s.

Step 3: Define the bounding box for the latent orientation
tensors L̄ by discarding the background. The bounding box
can be estimated by the minimum and maximum row and
column numbers that correspond to the foreground of latent
orientation tensors, see Fig. 1(d). The orientation field for the
tenprint image is shown in Figure 1(e). This L̄ in Fig. 1(d) is
the pattern that we want to locate in the tenprint T̄ in Fig 1(e).



Fig. 1. Various stages in the registration algorithm shown on B101L9 (latent) and B101T9 (tenprint) of NIST-SD27. (a) and (b) are the orientation field (OF)
generated from the ideal minutia set, with the minutiae plotted over the OF. (c) is the region in the tenprint that is to be found after registration of (a) into (b),
(d) and (e) are the orientation tensors of latent and tenprint. Here (d) is rotated +32◦. (f) is the result of correlating (d) and (e). (g) is the region were latent
pattern is identified in tenprint. (h) is the minutia region selected by our registration algorithm in this example.



Step 4: When searching for the pattern L̄ in T̄ , it is
possible that L̄ is not perfectly aligned with T̄ , rotation wise.
To compensate for the rotation alignment, we need to test
the latent L̄ against tenprint T̄ for various rotations of L̄.
In our experiments, we rotate L̄ in the range [−45,+45]
degrees with a step size ∆θ of 1 degree. We denote the
rotated L̄ as L̄θ. A geometric rotation of the field implies an
appropriate rotation of tensor field (complex values) with 2∆θ.

Step 5: Correlate the conjugate of the latent orientation
tensor L̄θ

∗
with T̄ to generate all possible 〈L̄θ, T̄s〉, the

scalar products between L̄θ
∗

and T̄s for varying locations s.
The result of this operation can be seen as a complex image
indexed by s which is of the size of T̄ , see Fig. 1(f).

Step 6: From the correlated result, find the point (or index)
s = (rθm, c

θ
m) where the magnitude of the scalar product

is maximum. In [9], the location where phase is minimum
was also used. But experimental results show that using only
locations of maximum magnitude generates similar results.
So, in this work, only location of maximum magnitude is
used. Both maximum magnitude and minimum phase convey
the region in T̄ where L̄θ agrees the most.

Step 7: Find the similarity based on Schwarz inequality
as explained in Section III, between L̄θ and T̄ms centered at
(rθm, c

θ
m). The L2 norms ‖L̄θ‖ and ‖T̄ms ‖ for different θ are

equal because the orientation tensors ei2θL and ei2θT are not
estimated from the gray pixel gradients, but reconstructed from
minutia orientations. Consequently, these orientation tensors
are complex numbers falling on a unit circle, representing the
local direction. So, the magnitude of the orientation tensors
thus obtained are always 1.

Step 8: The θ for which SS is maximum is deemed to be
the best alignment between latent and tenprint, and (rθ, cθ)
is the point in tenprint where the latent is registered. This
(rθ, cθ) corresponds to (rθm, c

θ
m) for which SS is maximum.

Step 9: The point (rθ, cθ) is the center of the latent
orientation tensor pattern that we have identified in the
tenprint, see Fig. 1(g).

Step 10: With (rθ, cθ) as center, and radius as half the
diagonal length of the bounding box of latent orientation
tensors, we generate a subset of minutiae from the tenprint
minutia set which falls inside this circular region, see Fig.
1(h).

V. EXPERIMENTS

We used the NIST-SD27 database detailed in Section II
for the experiments. To register the OF of latent against OF of
tenprint images, we used the ideal minutiae dataset from NIST-
SD27. The performance of the proposed registration algorithm
is measured looking at the percent of the ideal minutiae that
we detected in the registered region that is present in the
corresponding matched minutia set. We only used the matched

dataset (ground truth established by forensic examiner) to
check this overlap. The matched minutia sets are a subset of
ideal minutia set, but the location and orientation information
are not exactly the same. There are slight variations in the
location and orientation attributes between ideal and its corre-
sponding matched minutia set originated in the annotations by
the experts.

For example, G028T1I and G028T1M of NIST-SD27
contain 123 and 20 minutiae respectively. G028T1I is the
ideal minutia set and G028T1M is its corresponding matched
minutia set. The pair (X,Y,Orientation) = (562, 189,−68)
of ideal and (564, 182,−73) of matched are supposed to be
same minutia in the fingerprint. However there is a slight
variation with an euclidean distance of 7.2 pixel units. This
variation might be because of the uncertainty introduced by the
software used by the examiner while generating the matched
minutia set. In general, there is a small non-linear deformation
between the ideal and matched minutia sets of the tenprints,
and we fixed a threshold of 12 pixel units to compensate
for this. If the distance between a minutia from ideal and
matched sets is less than 12 pixel units, then they are assumed
to be corresponding mated pairs. A detailed study on NIST-
SD27 where these kind of discrepancies between the ideal
and matched minutia sets is reported in [14], where a refined
version of the ground truth minutia sets for NIST-SD27 is
made publicly available [14].

We perform experiments on Good, Bad and Ugly clas-
sifications of NIST-SD27 as detailed in Section II to report
the accuracy of the proposed registration algorithm. We also
report the rank identification rate for the publicly available
Minutia Cylinder-Code (MCC) SDK 1 [15] [16] [17] when
incorporating our proposed registration algorithm as a pre-
registration before the identification for both minutiae generate
OF and image generated OF.

A. Performance measurement protocol

To report the performance of our registration algorithm, we
first needed to see how well this algorithm can be utilized as a
preprocessing stage to reduce the search space of the minutia
in the tenprint for a particular comparison. The registration
algorithm finds the subregion in the tenprint that is of the size
of bounding box of latent orientation field, together with the
rotation parameter that will best align the latent and subregion
of tenprint orientation field. The search space of the minutia
set in tenprint is now limited to the circular region defined by
the size of the latent bounding box (Step 10 in Section IV).
The radius of circle is half the length of diagonal centered at
the center of bounding box of latent orientation tensors. All
minutia of the ideal tenprint that fall inside this circular region
become the current search space for latent-tenprint comparison.
The search space of the minutiae in tenprint is then reduced
to the size of the input latent.

We use the ground truth (otherwise called matched) minutia
set to check how many of the actual mated minutiae are present
in the minutia search space generated by our registration
algorithm. If the distance between a minutia from the matched
set and the minutia in the search space suggested by our
algorithm is less than 12 pixel units, then we conclude that

1http://biolab.csr.unibo.it (MCC-SDK Version 1.4)
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Fig. 2. Registration accuracy for Good, Bad and Ugly quality classification
of NIST-SD27 when minutiae generated OF is used.
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Fig. 3. Registration accuracy for Good, Bad and Ugly quality classification
of NIST-SD27 when image generated OF is used.

a mated pair has been identified by our registration algorithm.
This threshold is needed due to the discrepancies of NIST-
SD27 database as explained in the beginning of this Section.

B. Experiment 1 : Registration Accuracy

Fig. 2 shows the performance of our registration algorithm
on Good, Bad and Ugly classifications datasets of NIST-SD27
using minutiae generated OF. The X-axis is the minimum
percent of matched minutiae that should be contained in
the reduced minutia search space defined by our algorithm
and Y-axis is the percentage of database that satisfies the
threshold. For example, if the reduced minutia search space
should contain at least 75% of the matched (ground truth)
minutiae, then 99% of the database in Good category, 85%
of database in Bad category and 82% of database in Ugly
category contains 75% or more matched minutiae in the new
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Fig. 4. CMC curve showing the rank identification rate of MCC-SDK with
and without pre-registration when minutiae generated OF is used.
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Fig. 5. CMC curve showing the rank identification rate of MCC-SDK with
and without pre-registration when image generated OF is used.

search space generated by our registration algorithm.

Similarly, Fig. 3 shows the performance of our registration
algorithm using image generated OF on Good, Bad and Ugly
category. Here, for the same 75% threshold, 95% of database
in Good category, 78% of database in Bad category and 55%
of database in Ugly category were correctly identified.

C. Experiment 2 : Pre-registration

From the latents, 88 fingerprints of Good category, 85
fingerprints of Bad category and 85 fingerprints of Ugly
category were searched in the entire 258 tenprints in the NIST-
SD27 database, and their rank identification accuracies before
pre-registration and after pre-registration are shown.

Figure 4 shows the CMC curve of MCC-SDK on Good,
Bad and Ugly quality classification of NIST-SD27 when minu-



tiae generated OF is used for pre-registration. In case of Bad
quality classification, there is a consistent improvement of rank
identified rate when pre-registration is incorporated. For Good
and Ugly quality category, the rank identification rate improves
only slightly.

Figure 5 shows the CMC curve of MCC-SDK on Good,
Bad and Ugly quality classification of NIST-SD27 when image
generated OF is used for pre-registration. The identification
rate in this scenario does not improve mainly because of the
quality of the orientation field estimated directly from latent
fingerprint images are poor.

As we have observed, the pre-registration helps in improv-
ing the identification rate for Good, Bad and Ugly quality
categorization when we use minutiae generate orientation field
in place of image generated orientation field. Particularly for
Bad quality categorization, there is a significant improvement
in rank identification rate.

VI. CONCLUSION AND FUTURE WORK

Experimental results show that our algorithm can perform
the registration based on OF and estimate a subset of minutiae
region in tenprint minutiae set for Good, Bad and Ugly quality
categorization of NIST-SD27 database. By obtaining such extra
information, we can perform pre-registration for any standard
minutiae-based matcher by reducing the search space for the
matcher. We observed that when we use OF regenerated from
minutiae, we are able to achieve better registration accuracy
as compared against OF estimated from the latent fingerprint
images.

Our registration algorithm used as a pre-registration stage
for MCC-SDK, we noticed we were able to improve the rank
identification rate for Bad quality category significantly, and
slightly for Good and Ugly quality category. This performance
is achieved when using OF reconstructed from the minutiae set.
This shows the usefulness of our registration algorithm as well
the usefulness of minutiae generated OF as compared against
image generated OF. Together with the correlation based
registration, use of other similarity measures applicable to OF
to improve the registration accuracies are under investigation.
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