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   Abstract— With advancements in technology, human 

biometrics, especially face recognition, has witnessed a 

tremendous increase in usage prominently in the field of 

security. Face recognition proves to be a convenient, 

coherent, and efficient way to identify a person uniquely. 

Face recognition systems are trained generally on human 

faces sans masks. With the ubiquitous use of face masks 

due to the ongoing COVID-19 pandemic, face 

recognition becomes a daunting challenge. In this paper, 

the deep learning architectures, namely MobileNetV2, 

DenseNet201, ResNet50V2 and VGG16 with the ArcFace 

loss function, were trained on the newly created dataset 

called “MaFaR”, which consists of a mixture of masked 

and unmasked images of 75 distinct individuals, and 

ensemble learning techniques have been used to improve 

the performance, achieving an accuracy 93.65%.  
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I.  INTRODUCTION 

Traditionally, humans safeguard and secure their 

devices and property using IDs and passwords, 

passphrases, etc., to protect them from crime, sabotage 

or attack, espionage, and privacy invasion. Face 

recognition has become a popular form of biometric 

security owing to advancements in technology. 

Further, an increasing number of countries have begun 

to view facial recognition technology as a law 

enforcement solution and utilise it to crack down on 

crime [1]. Deep learning architectures like DeepFace 

[2], FaceNet [3] and VGGFace [4] have been able to 

achieve high accuracy in establishing the identity of 

individuals. The deep learning algorithms extract 

features from the face to uniquely recognise the 

individual.  

 

The COVID-19 pandemic has affected around 165 

million people and killed more than 3 million people 

[5]. It has exacted a toll on the public health systems 

and has permanently changed the world in which we 

live. The COVID-19 virus spreads primarily through 

the respiratory droplets expelled by an infected person 

while sneezing, coughing and talking. These droplets 

can transmit the disease when landed in the noses or 

mouths of other persons. Studies have shown that 

masks when worn correctly, reduce the spray of 

droplets and thus the risk of infection. Wearing a mask 

has now become a norm and, in many cases, even 

mandatory. Many face recognition systems rely on 

deep learning techniques to recognise individuals. 

Face recognition systems are usually trained on 

unmasked images of the person, which performs 

poorly on identifying the masked images of the same 

individual. Face recognition meets a new challenge 

due to the ubiquitous usage of masks, as the mask 

worn by the person makes their nose, mouth, and the 

region around it occluded.    

 

This paper proposes an approach to tackle the problem 

of masked facial recognition. In this work, the 

experiments were performed on MaFaR (Masked 

Face Recognition) dataset. This work uses four deep 

learning architectures, namely MobileNetV2 [6], 

DenseNet201 [7], VGG16 [8] and ResNet50V2 [9], all 

of which were instantiated with pre-trained ImageNet 

weights. Additionally, Additive Angular Margin Loss 

(ArcFace) [10] was used as the loss function for each 

deep learning architecture. The additive angular 

margin loss obtains highly discriminative features for 

face recognition [10], and it helps in stabilising the 

training process. All four deep learning models were 

trained individually with the same training set. Soft 

voting, a type of ensemble technique, was used on the 

class probabilities obtained from the prediction of each 

trained deep learning model on the test set to achieve 



better performance. Thus, our contribution includes: 

(i) Fabricating a new dataset, MaFaR, which consists 

of masked and unmasked images, (ii) Performing 

facial recognition by training deep learning 

architectures with ArcFace loss function and (iii) 

Improving performance through soft voting.  

 

II.  RELATED WORKS 

Computer vision is an area of high research interest 

because of its broad spectrum of applications. The 

field of computer vision has achieved major strides in 

recent years, particularly owing to the development 

and evolution of convolution neural networks. In 

2012, the AlexNet architecture [11] achieved an error 

rate of 15.3% on the ImageNet dataset [12], 

establishing a major benchmark. In 2015, ResNet [13] 

outperformed AlexNet by achieving an error rate of 

3.57% on the same ImageNet dataset. One popular 

problem faced in the domain of computer vision is face 

recognition. Deep learning architectures and 

techniques facilitated several advancements in the 

field of face recognition. FaceNet and VGGFace 

obtained 99.63% and 98.95% accuracy, respectively, 

on the LFW dataset [14]. 

One major challenge involved in face recognition is 

identifying the individual despite the occlusions 

present in the image. The scope of many simple face 

recognition algorithms becomes parochial when its 

objective is to identify an individual wearing a hat, 

sunglasses, masks, etc., which could act as a possible 

occlusion [15]. Earlier research works involving the 

identification of faces with occlusion primarily used 

two approaches to tackle the problem: one involves 

restoration while the other involves the removal of 

occlusion [15].  

In the former approach, the occluded regions of images 

are restored with the help of images present in the 

training batch. Bagchi et al. [16] used the iterative 

closest point algorithm to register the input 3D face 

images. The occlusions are extracted by thresholding 

the depth map value of the 3D image, after which 

Principal Component Analysis (PCA) was used for 

restoration. Drira et al. [17] used a statistical approach 

to estimate and predict occlusions, and PCA was used 

to restore the regions of occlusions.  

The discard occlusion-based approach detects and 

removes the regions of the face image that are found 

to be occluded so as to prevent improper 

reconstruction. The feature extraction and 

classification steps utilise only the non-occluded 

regions of the image. Priya et al. [18] split the face 

image into local patches. The support vector machine 

classifier was used to detect and remove the occluded 

region of the image. Following this, face recognition 

was performed using a mean based weight matrix on 

the non-occluded parts of the image. Alyuz et al. [19] 

used both occlusion removal and restoration 

techniques. Global mask projection was used to 

remove the occlusions, after which restoration was 

done using Gappy PCA.  

The authors of the above papers focused on face 

recognition with occlusion in general, while Hariri 

[15] and Biswas et al. [20] primarily focused on face 

recognition with masks as occlusion. Hariri [15] 

performed masked face recognition by cropping out 

the masked face region, after which the feature maps 

of each face were obtained using Bag-of-Features 

(BoF) in the last convolutional layer of the pre-trained 

VGG-16, after which, Multilayer Perceptron (MLP) is 

applied for classification. Biswas et al. [20] utilised a 

ResNet50 architecture pre-trained on VGGFace2 to 

train the model on unmasked images and test it on 

masked images with the help of transfer learning.  

Deng et al. [10] proposed Additive Angular Margin 

Loss (ArcFace) loss function. This loss function was 

able to obtain the discriminative features for facial 

recognition and consistently performs better than the 

other state-of-the-art loss functions. Montero et al. [21] 

implemented an ArcFace based face recognition 

system to identify masked images. They used a dataset 

consisting of unmasked images and generated masked 

images, and used ResNet50 as the backbone with 

multi-task ArcFace loss, a combination of ArcFace loss 

and mask-usage classification loss.  

The objective of this paper is analogous with the goals 

of the research works mentioned above, which is to 

identify masked face images successfully. In this work, 

a Masked Face Recognition (MaFaR) dataset 

consisting of masked and unmasked images is 

fabricated and used to train an ensemble of deep 

learning models, each using the ArcFace loss function 



and then performing soft voting to improve 

performance. 

III.  MASKED DEEP FACE RECOGNITION 

The process of collecting and fabricating the masked 

and unmasked videos subsequently till the splitting of 

the ‘MaFaR dataset’ to training, validation and test set 

has been explained in Section 4.1. Figure 1 represents 

the pipeline of this work. The images present in the 

training, validation and test set are of RGB format with 

size (224X224).  

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
Fig.1: Model pipeline 

 

This experiment used four deep learning architectures, 

namely VGG16, DenseNet201, ResNet50V2 and 

MobileNetV2. ResNet50V2 is a modified version of 

the ResNet50 architecture. In ResNet50V2, a 

modification was made in the propagation formulation 

of the connections between blocks. ResNet50V2 

performs better than ResNet50 [13] and ResNet101 

[13] on the ImageNet dataset. MobileNetV2 is an 

improvement of the MoblieNetV1 architecture [22], 

and it introduces two new features, which include 

linear bottlenecks between the layers and shortcut 

connections between the bottlenecks. The 

architectures mentioned above were instantiated with 

ImageNet weights and used the ArcFace loss function 

with the feature scale parameter s set to 30 and the 

angular margin parameter m set to 0.3. The last 

convolutional layer of each of these architectures was  

followed by batch normalization [23]–dropout [24]-

fully connected-batch normalization structure as used 

in [10] to get a final 512-D embedding feature.  

 

 

The SGD optimiser was used with a learning rate of 

0.1, momentum of 0.9 and a weight decay of 5𝑒−4. The 

class probabilities of each image given by the trained 

deep learning models are then summed, and the image  

is grouped to the class having the highest summed 

probability. 

 

A.  ArcFace 

An additive angular margin penalty into the softmax  

loss by ArcFace [10] as mentioned in Equation (1). 
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Where N denotes the total number of classes, m 

denotes the angular margin parameter, and s denotes 

the feature re-scale parameter, The angle between the 

embedding feature  𝑥𝑖 of the i-th face sample and the 

j-th class center 𝑊𝑗  is denoted by 𝛩𝑗 . If 𝑦𝑖  is the class 

label of 𝑥𝑖, then 𝛩𝑦𝑖
 denotes the angle between 𝑥𝑖 and 

the ground-truth center 𝑊𝑦𝑖
.  

 

IV. EXPERIMENTAL DISCUSSION AND 

RESULTS 

This section discusses how the customised dataset 

“MaFaR” is created and the accuracy of the deep 

learning models using the proposed masked deep face 

recognition model. 

A. Dataset Creation 

The process of creating a customized dataset, MaFaR, 

involved the collection of two videos from each 



subject, totalling 75 subjects, one video with the 

person wearing a mask and another video without 

wearing a mask. Each person who volunteered has 

been instructed to gently turn their head on both sides 

so that the centre, right and left sides of their faces are 

visible in the video. On average, these videos were 6-

7 seconds long. The frames were extracted from the 

collected videos and were stored separately. The 

system extracted 18,684 frames from the videos 

containing masked individuals and 18,013 frames 

from the videos containing individuals not wearing 

masks. In total, 36,697 frames were extracted.   

 

 

 

 

Fig. 2: Frames extracted from masked and unmasked videos 

The facial bounding box was generated for all the 

frames extracted, and the region inside the bounding 

box was selected and stored. The OpenCV DNN 

module with Caffe framework [25] was used to 

identify the region of the image containing only the 

face for the masked and unmasked frames, which was 

then enclosed in a bounding box. The bounding box 

generated for certain images were improper, and they 

were manually discarded. The resulting bounding box 

images were used to create the MaFaR dataset. The 

MaFaR dataset consists of 22,500 images of both 

masked and unmasked images belonging to 75 

different individuals, with each individual having 150 

masked and unmasked images each. The images in the 

MaFaR dataset were randomly split into train, 

validation and test set. This work uses 15,000 images 

for training, 3,750 images each for validating and 

testing. The training set consists of 75 different 

individuals with 200 images per individual. The 

validation and test set each consist of 75 different 

individuals with 50 images per individual. A nearly 

equal number of masked and unmasked images were 

present for each person in the training, validation, and 

test set. 

  

  

  
  

 

   Fig. 3: Images obtained after generating the bounding box 

 

A. Performance of masked deep face recognition 

The deep learning models were set up as mentioned in 

model architecture. Each architecture was trained 

individually for 70 epochs with a batch size of 32. 

Training, validation and test accuracy obtained by 

each model is mentioned in Table 1. It is evident that 

ResNet50V2 has obtained the highest accuracy of 

71.65% on the test set and has the least training loss 

compared to the other models. MobileNetV2 has 

obtained the highest training accuracy of 79.39% and 

the highest validation accuracy of 77.18% and also has 

the least validation loss. The accuracy curve of all the 

four deep learning models reaches a maximum and 

then becomes stable, providing a perfect accuracy 

curve, as seen in Figure 4.  The loss curve of all the 

four deep learning models reaches a minimum and 

becomes stable, as observed in Figure 5, providing a 

perfect loss curve indicating that the models are 

learning from the data. Further, soft voting was 

implemented to enhance the performance of the deep 

learning models. The class probabilities for each 

image in the test set is obtained from the four trained 

deep learning models. The class probabilities of each 

image are then summed, and the image is grouped to 

the class with the highest summed probability. 



  

(i) DenseNet201 (ii) MobileNetV2 

  

(iii) VGG16 (iv) ResNet50V2 

Fig. 4: Accuracy Vs Epoch 

Finally, a test accuracy of 93.65% was achieved using 

this ensemble technique, thereby vastly improving the 

performance on the test set. 

 
Tabe 1: Train, Validation and Test Accuracy of the Deep Learning 

Models 

Architecture Train 

Accuracy 

Validation 

Accuracy 

Test 

Accuracy 

DenseNet201 71.92% 70.50% 64.02% 

MobileNetV2 79.39% 77.18% 69.70% 

VGG16 77.40% 67.40% 62.42% 

ResNet50V2 79.01% 73.55% 71.65% 

 

This ensemble approach has significantly improved 

the accuracy as compared to any individual model 

performance. 

V. CONCLUSION 

Face recognition systems are generally trained on 

unmasked images; therefore, it becomes challenging 

for such systems to recognise masked individuals. In 

this work, deep learning architectures were trained on 

the MaFaR dataset, and each of the architectures used 

the ArcFace loss function. The proposed ensemble-

based ArcFace loss function, along with soft voting, 

 
 

 
 

(i) DenseNet201 

 
(ii) MobileNetV2 

 

  
 

(iii) VGG16 
 

(iv) ResNet50V2 

 
Fig. 5: Loss Vs Epoch 

 

helped to achieve an accuracy of 93.65%. This 

approach outperforms the accuracy of deep learning 

models evaluated individually. 
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