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Abstract—Automated Fingerprint Identification Systems
(AFIS) are commonly used by law enforcement agencies to
narrow down the possible suspects from a criminal database.
AFIS do not use all discriminatory features available in
fingerprints but typically use only some types of features
automatically extracted by a feature extraction algorithm.
Latent fingerprints obtained from crime scenes are usually
partial in nature which results to only very few number of
reliable minutiae. Comparing a partial minutiae pattern to a
full minutiae pattern is a difficult problem. Towards solving this
challenge, we propose a method that exploits extended fingerprint
features (unusual/rare minutiae) not commonly considered in
typical minutiae-based matchers. The method we propose in
this work can be combined with any existing minutiae-based
matcher. We first compute a quantitative measure based on
least squares between latent and tenprint minutiae points, with
rare minutia feature as reference point. Then the similarity
score of the reference minutiae-based matcher is modified
based on the least square quantitative measure. The modified
similarity score thus obtained incorporates the contribution of
rare minutia features. We use a realistic forensic fingerprint
casework database in our experiments which contains rare
minutia features obtained from Guardia Civil, the Spanish
law enforcement agency. Experiments are conducted using two
reference minutiae-based matchers, namely: NIST-Bozorth3 and
VeriFinger. We report a significant improvement in the rank
identification accuracies when the reference minutiae matchers
are augmented with our proposed algorithm based on rare
minutia features.

I. INTRODUCTION

A common forensic evidence used in criminal investigations
is latent fingerprint, but identifying the suspects based on latent
fingerprints is not an easy task. This is mainly attributed to
the poor quality of the latent fingerprints obtained from the
crime scenes. When a latent fingerprint is found, the criminal
investigators first search for the suspect in criminal database
using an Automated Fingerprint Identification System (AFIS)
to narrow down their manual work. If there is a match, then
the individual is linked to the crime under investigation. Indi-
vidualization (identification or match) is the decision yielded
by a forensic examiner about the latent fingerprint belonging
to a particular individual. This is the outcome of the Analysis,
Comparison, Evaluation and Verification (ACE-V) [1] method-
ology currently followed in friction ridge examination.

(a) Good (b) Bad (c) Ugly

Fig. 1. Subjective quality classification of latent fingerprint images in NIST
Special Database 27 (NIST-SD27).

Fig. 2. Typical minutiae (ridge-ending, bifurcation), extended features
(assemble, ridge-crossing, enclosure) and singular points (core, delta) in an
exemplar fingerprint from NIST-SD27 database.

In general, latent fingerprints are partial in nature and are
of varying quality (see Figure 1), mostly distorted, smudgy,
blurred etc. These factors lead to high number of unreli-
able features extracted in fully automatic mode, and make
it difficult for AFIS to perform well. AFIS do not use all
the discriminatory features that could be derived from a
fingerprint, mainly due to the limitations of automatic and
reliable extraction of all types of discriminatory features. The
accuracy of feature extraction and matching algorithms for
AFIS in forensic scenario is of great importance to avoid
erroneous individualization.

Current practice in latent AFIS technology involves marking
the latent fingerprint features manually by forensic examiners
and then using both the latent fingerprint image and the manu-
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ally marked features to search in the AFIS for a list of possible
suspects. To avoid this burden of manual marking and with the
hope of fully automating the latent AFIS, NIST conducted a
public evaluation of commercial AFIS performance in Lights-
Out mode, where the feature extract and matching are com-
pletely automatic. This was a multi-phase open project called
Evaluation of Latent Fingerprint Technologies (ELFT) [2].
In the final evaluation of ELFT, the best performing system
achieved only 63.4% Rank-1 identification accuracy. In [3],
it is concluded that only a limited class of latents which are
of good quality benefits from automated procedures, and still
manual intervention is necessary. The procedures of marking
the minutiae, determining the subjective quality of latents, etc.
still need to be carried out manually.

Any features that are not currently used by commercial
AFIS are generally termed as Extended Feature Sets (EFS) [4].
To use EFS in automated systems, reliable feature extraction
algorithms are mandatory. For testing the feasibility to include
EFS in latent AFIS, NIST conducted another multi-phase
commercial latent AFIS evaluation called Evaluation of Latent
Fingerprint Technologies - Extended Feature Sets (ELFT-
EFS) [5].

ELFT-EFS was conducted in a “Semi Lights-Out” mode
which involves manual intervention as compared to the
“Lights-Out” mode for ELFT which was fully automatic. The
main purpose of ELFT-EFS was to determine the effective-
ness of forensic examiner marked latent fingerprint features
on the latent identification accuracy. NIST conducted two
evaluations for ELFT-EFS. In [6], it is reported that though
the highest measured rank identification accuracy achieved by
an individual matcher at Rank-1 was 71.4%, approximately
82% of the latents were correctly matched at Rank-1 when
more matchers were combined. This corroborates the potential
for additional accuracy improvement when combining multiple
algorithms [7].

In this work, we propose a method to improve the identifi-
cation accuracy of minutiae-based matchers for partial latent
fingerprints by incorporating reliably extracted rare minutia
features. Most minutiae-based fingerprint matchers use only
two prominent ridge characteristics namely ridge-endings and
bifurcations.

We propose an algorithm that will modify the similarity
scores of minutiae-based matchers based on the presence of
rare minutia features like assemble, ridge crossing, enclosures,
dots, interruptions, etc (see Figure 2). The weights that we
use to modify the similarity scores are obtained based on the
probability of occurrence of such rare minutia features. The
decision for a match or non-match is automatically estimated
based on least squares fitting of an affine transformation
between the latent minutiae set and the tenprint minutiae
set. We show a significant improvement in the overall rank
identification accuracies for two minutiae-based matchers
(NIST-Bozorth3 and VeriFinger) when their similarity scores
are modified using our proposed algorithm which incorporates
rare minutia features.

The main contributions of this work are as follows:
1) A methodology to adapt any minutiae-based matcher by

incorporating information from rare features.
2) Experimental demonstration of the performance im-

provement of minutiae-based matchers when incorpo-
rating information from rare features.

3) We finally present also various population statistics
about rare minutia features present in a realistic forensic
casework database obtained from Spanish law enforce-
ment agency (Guardia Civil).

In the following sections, we review related works about
the use of EFS and other pre-processing to improve AFIS
performance, and describe: the database and statistics of
rare minutia features, the proposed algorithm to modify the
similarity scores based on rare features, experiments, results
and conclusions.

II. RELATED WORKS

A detailed study on extended fingerprint feature sets was
reported by Jain [8]. This includes several extended fea-
tures from Level-One, Level-Two and Level-Three. It was
concluded in [8] that manual intervention is strongly rec-
ommended while using EFS, as well as extended features
from Level-One and Level-Two are highly recommended to
be incorporated in latent AFIS. Extended features such as
ridge flow map, ridge wavelength map, ridge quality map, and
ridge skeleton have shown significant improvements in latent
identification accuracies. Level-One and Level-Two details
used in [8] [9] are insensitive to image quality, and do not
rely on high resolution images. To incorporate Level-Three
EFS such as pores, dots, incipients, etc, it is essential to have
high resolution fingerprint images.

The use of pores as extended features was studied in high
resolution 1000 ppi images by Zhao et al. [4] and Jain et
al. [10]. Dots and incipients were studied by Chen et al. [11].
Among pores, dots and incipients, pores resulted in better
performance [4]. Even though high resolution 1000 ppi images
were used, live scan images resulted in easy detection of pores
automatically, which was not the case with inked fingerprint
images. Pore extraction based on skeletonized and binary
images was studied by Stosz et al. [12] [13] and Kryszczuk et
al. [14]. These techniques were demonstrated effective only on
very good quality high resolution fingerprint images scanned
approximately at 2000 ppi [12]. These methods were more
sensitive to noise, and the performance degrades for poor
quality of fingerprint images and low resolution images.

Score level fusion of different algorithms using various
extended fingerprint features was report by Fierrez et al. [15].
Features like singular points, ridge skeleton, ridge counts,
ridge flow map, ridge wavelength map, texture measures were
studied by analyzing the correlation between them using fea-
ture subset-selection techniques. Combination of features show
significant improvement in the performance of the system.

When only partial fingerprints are available, pre-alignment
of partial minutiae set and full minutiae set based on ori-
entation fields of respective fingerprints helps in reducing

2



Fig. 3. Minutia types used by Guardia Civil. Names corresponding to
individual minutia type numbers can be found in Table I.

No Minutiae type No Minutiae type No Minutiae type

1 Ridge Ending 6 Interruption 11 Circle

2 Bifurcation 7 Enclosure 12 Delta

3 Deviation 8 Point 13 Assemble

4 Bridge 9 Ridge Crossing 14 M-structure

5 Fragment 10 Transversal 15 Return

TABLE I
LIST OF MINUTIA TYPES USED BY GUARDIA CIVIL. NUMBERING WITH

RESPECT TO FIGURE 3.

the minutiae search space of full fingerprint relative to the
size of partial fingerprint. Such reduction in the size of
minutiae search space improving the performance of system
was reported by Krish et al. [16] [17] [18]. This approach
has shown significant improvement in the system performance
especially for poor quality latent fingerprints.

III. DATABASE AND STATISTICS

The database used in this work was obtained from Guardia
Civil, the Spanish law enforcement agency. The Guardia Civil
database (GCDB) is a realistic forensic fingerprint casework
database, but they are not publicly available. Apart from hav-
ing typical minutia feature types (ridge-endings, bifurcations),
GCDB also comprises rare minutia types like fragments,
enclosures, dots, interruptions, etc [19]. A comprehensive list
of rare minutia features used by Guardia Civil are shown in
Figure 3 and the corresponding minutiae type names are listed
in Table I.

GCDB consists of 268 latent and tenprint (exemplar) pairs
of fingerprint images and minutia sets. All the minutiae in
the latent fingerprint images were manually extracted by
forensic examiners of Guardia Civil. The corresponding mated
minutiae in the tenprints were also manually established. This
includes the typical (ridge-endings and bifurcations) minutiae
and the rare minutiae. These are called matched minutiae set,
i.e, the minutiae sets for which a one-to-one correspondence
is established between the latent and the mated tenprint. The
number of minutiae in the latent and its corresponding mated
tenprint are the same in case of matched minutiae set.

The ideal minutiae set (i.e., all possible minutiae) for the
tenprints were extracted using VeriFinger SDK [20]. Ver-
iFinger extracts only the typical minutia features from the
fingerprint image. We then added the manually extracted

No Minutiae Type Probability (pi) Weight
(wi = − log10 pi)

1 Ridge-ending 0.5634 0.2492

2 Bifurcation 0.3620 0.4413

3 Deviation 0.0015 2.8294

4 Bridge 0.0024 2.6253

5 Fragment 0.0444 1.3523

6 Interruption 0.0021 2.6833

7 Enclosure 0.0204 1.6896

8 Point 0.0036 2.4492

10 Transversal 0.0003 3.5284

TABLE II
THE PROBABILITY OF OCCURRENCE AND THE ENTROPY BASED WEIGHTS
FOR THE MINUTIA TYPES PRESENT IN THE 268 LATENT FINGERPRINTS OF

GCDB. THE NUMBERS CORRESPOND TO MINUTIA TYPES IN FIGURE 3

rare minutiae into the GCDB tenprint minutiae set. In ideal
minutiae set, the number of minutiae between the latent and
the corresponding mated tenprint minutiae set are not equal.
The average number of minutiae in the latents was 13 and that
of tenprints was 125.

The original latent minutia sets and the ideal tenprint
minutia sets are used in our experiment. To represent some
rare minutiae, multiple points were needed. For example, to
represent a deviation, two points are needed (see type 3 in
Figure 3), and to represent an assemble, three points are
needed (see type 13 in Figure 3). Whenever multiple points
are needed to represent a rare minutia, we mapped them to a
single point representation by taking the average of locations
and orientations of all points representing the rare minutia.

From the 268 latent fingerprint minutia sets, we estimated
the probability of occurrence (pi) of various minutia types.
The probability (pi) and the entropy-based weights (wi =
− log10 pi) for each minutia type present in GCDB are listed
in Table II. In the 268 latent fingerprints of GCDB, we noticed
only seven types of rare minutia features. They are listed in
Table II. Other rare minutia types are not found in the current
database used in this study.

IV. ALGORITHM

The latent fingerprints of GCDB are highly partial in nature,
with an average of 13 minutiae per latent. To make an
appropriate alignment between the latent minutia points and
the tenprint minutia points (with an average of 125 minutia
points) requires a reliable reference point. We choose the rare
minutia features as reference points to perform the alignment.

Let L and M be the representation of latent and tenprint
minutia sets respectively. Each minutia is represented as a
quadruple m = {x, y, θ, t} that indicates the (x, y) location
as coordinates, the minutia angle θ, and the minutia type t:

L = [m1 m2 ... mp] , mi = [xi yi θi ti]
T , i = 1...p
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Fig. 4. Sequence of steps in estimating the modified similarity score of a reference minutiae-based matcher.

M = [m′1 m
′
2 ... m

′
q], m′j = [x′j y

′
j θ
′
j t
′
j ]
T , j = 1...q,

where p and q are the number of minutiae in L and M
respectively. If t > 2, then the minutia is of rare type (from
Table I), and [ · ]T denotes transpose.

The algorithm to generate modified similarity score of a
minutiae matcher is described in two stages. Similarity scores
of minutiae matcher is modified only if they contain rare
minutia features.

The first stage of the algorithm estimates the least square
fitting error for an affine transformation of the latent minutiae
set onto a tenprint minutiae set. The second stage of the algo-
rithm modifies the similarity score generated by the minutiae-
based matcher based on the fitting error. Other works related
with modifying the similarity score based on pre-alignment are
reported in [16], [21], [22]. The sequence of steps involved in
generating the modified score of the minutiae matcher using
our proposed algorithm is summarized in Figure 4.

Stage-1 : Least Square Fitting Error
Step 1: To find the affine transformation between L and

M , it is first needed to establish a one-to-one correspondence
between minutiae from L and minutiae from M . Let the subset
of minutiae from M which establishes correspondence with
minutiae from L be denoted as Ms.

Step 2: Superimpose one rare minutia point of L onto the
corresponding rare minutia point of M , only if they both are
of the same type (if there are multiple rare minutia points, take
any). If the type of the rare minutia between L and M differs,
or M does not contain any rare minutiae, then the comparison
is assumed to be non-match.

Step 3: To establish the correspondence between latent and
tenprint minutia points, we choose the minutia points from

M that are close to the minutia points of L. The Euclidean
distance is calculated between the minutia pairs (only typical
minutiae) to determine whether the pairs are close or not.

Step 4: To compensate for rotation alignment, we rotate the
latent in the range [−45◦,+45◦] with respect to the superim-
posed rare minutiae, and estimate the Euclidean distance for
each rotation step of size 1◦.

Step 5: The optimal rotation is the one for which the average
sum of distances between closest pairs is minimum.

Step 6: After the alignment, all those minutia pairs which
are within a threshold distance are considered to be mated
pairs, and a one-to-one correspondence is established between
them. As a result, we obtain a subset Ms of the tenprint minu-
tiae M . After establishing the correspondence, the number of
minutiae between L and Ms are the same.

Step 7: Once the correspondence is established, we find the
least square fitting error for the affine transformation between
the latent minutia points and the subset of tenprint minutiae
set. For L̂ and M̂s, which are the modified version of L and
Ms with only the (x, y) locations as minutia representation
augmented with a value 1, i.e,:

L̂ = [m̂1 m̂2 ... m̂p]; m̂i = [xi yi 1]
T ; i = 1...p

M̂s = [m̂′1 m̂
′
2 ... m̂

′
p]; m̂′j = [x′j y

′
j 1]T ; j = 1...p,

we are looking for some affine transformation matrix

A = [ajk]j,k=1...3 (1)

and some translation vector

τ = [τ1 τ2 ... τp]; τ1 = τ2 = ... = τp = [δx δy 1]T ; (2)

such that
M̂s ≈ AL̂+ τ (3)
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where [δx δy] is the translation needed to superimpose the rare
minutia of L and M .

Step 8: Find the least square fitting error between L̂ and
M̂s defined as follows:

EL̂,M̂s =
1

p

p∑
i=1

||m̂′i −Am̂i − τi||22 (4)

where ||m̂′i −Am̂i − τi||2 is the L2 norm.
For a match comparison, we expect this fitting error to be

small, whereas for a non-match comparison, the fitting error
is expected to be large.

If there are multiple matching rare minutiae feature between
L and Ms, then EL̂,M̂s is calculated for all such minutiae
types. The fitting error for such a comparison is chosen to be
the minimum of all the fitting errors calculated.

Stage-2 : Weighted scores
Step 9: Using a standard minutia matcher, generate the

similarity score Sm between L and M . The modified similarity
score S′m based on a fitting error threshold E is obtained as
follows:

S′m =

{
Sm × wi if EL̂,M̂s ≤ E,
Sm × pi otherwise

(5)

where wi is the derived entropy based weight, and pi is the
probability of occurrence of a particular rare minutia type ti
based on which fitting error is estimated. The values for wi and
pi for all minutiae type ti are listed in Table II. If EL̂,M̂s ≤ E,
then the comparison is deemed to be a match, and if EL̂,M̂s >
E, the comparison is deemed to be a non-match.

Thus, we obtain a modified similarity scores S′m for a
particular minutiae matcher by rewarding or penalizing the
similarity scores based on the fitting error obtained using our
approach.

V. EXPERIMENT

We performed all our experiments on the minutia sets of 268
latents and corresponding 268 tenprints of GCDB. To generate
similarity scores, we used two minutiae matchers namely:
NIST-Bozorth3 [23] and VeriFinger SDK [20]. When reporting
the rank identification accuracies in our experiments, there are
268 match comparisons and 268×267 non-match comparisons.
NIST-Bozorth3 is a minutiae based fingerprint matcher that
is specially developed to deal with latent fingerprints and is
publicly available. This matcher is part of the NIST Biometric
Image Software (NBIS) [23], developed by NIST. VeriFinger
is a commercial SDK that is widely used in academic research.
We report the performance accuracy and improvement of all
the matchers using Cumulative Match Characteristic (CMC)
curves.

A. Experiment: Importance of rare minutiae

Two configurations are compared in this experiment to
demonstrate the importance of rare minutia features:

1) Typical Features: Only the typical minutia features
(ridge-endings and bifurcations) were used to generate
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Fig. 5. Improvement in rank identification when incorporating rare minutia
features for NIST-Bozorth3.
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Fig. 6. Improvement in rank identification when incorporating rare minutia
features for VeriFinger-SDK.

similarity scores using the reference minutiae-based
matchers.

2) Typical + Rare Features: The similarity scores generated
by the reference minutiae-based matchers are modified
using our proposed algorithm.

For a given comparison, the similarity scores generated by
the minutiae-based matcher are modified based on fitting error
alone. If the fitting error was less than or equal to E, then
the comparison is deemed to be a match comparison and their
similarity score is rewarded as indicated in Eq.(5). If the fitting
error is more than E (a non-match comparison), then the
similarity score is penalized. The value of E was empirically
chosen as 4 in this experiment. If no rare minutiae is present,
then the similarity score of reference matcher is not modified.

Figures 5 and 6 show the rank identification accuracy in
CMC curve for both NIST-Bozorth3 and VeriFinger. For NIST-
Bozorth3, the Rank-1 identification improved from 25.37%
to 64.18%, and for VeriFinger, the Rank-1 identification im-
proved from 31.72% to 60.82% when rare minutia features
were incorporated and the similarity scores are modified based
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Matcher Typical Features Typical + Rare
(Rank-1) in % (Rank-1) in %

NIST-Bozorth3 25.37 64.18
VeriFinger 31.72 60.82

TABLE III
RANK-1 IDENTIFICATION FOR NIST-BOZORTH3 AND VERIFINGER UNDER

VARIOUS CATEGORIES OF ANALYSIS.

on the fitting error proposed in our algorithm. Moreover,
overall there is a consistent and significant improvement in
rank identification accuracies for both reference minutiae-
based matchers when we incorporate our proposed algorithm.
The average number of minutiae per latent is only 13, and
among them, only 92% of minutiae are typical (see Table II).
This implies a further reduction in typical minutiae counts per
latent. Since the typical minutiae count per later is very less,
the performance of the minutiae-based matchers are low when
only typical minutiae are used. Table III summarizes the Rank-
1 accuracy for both NIST-Bozorth3 and VeriFinger under the
two configurations considered.

VI. CONCLUSIONS

One of the crucial challenges faced by AFIS is on how to
improve the rank identification accuracies when only partial
fingerprints are available. We proposed a methodology that
makes use of reliably extracted rare minutia features to im-
prove the rank identification accuracies for minutiae matchers.

The usefulness of the proposed method is demonstrated on
two widely used minutiae-based matchers, NIST-Bozorth3 and
VeriFinger. Both matchers showed significant improvements in
the rank identification accuracies when their similarity scores
were modified based on the fitting error proposed in our
methodology.

We conclude that even if we have only few number of
minutiae in a partial latent, presence of reliably extracted
rare minutia features makes the comparison more robust.
In our experiments, we used the rare minutia features that
were manually extracted by forensic examiners. The results in
this work inform the future minutiae extraction algorithms to
incorporate robust automatic extraction of rare minutia features
from high resolution fingerprint images. This will significantly
improve the current state of the art in AFIS adapted for latent
fingerprints.
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